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Abstract

This report presents research results on general serial robotic m_-

nipulators modeled with structural compliances. Two compliant manipulator

modeling approaches, distributed and lumped parameter models, are used in

this study. System dynamic equations for both compliant models are derived

by using the first and second order influence coefficients. Also, the proper-

ties of compliant manipulator system dynamics are investigated. One of the

properties, which is defined as inaccessibility of vibratory modes, is shown

to display a distinct character associated with compliant manipulators. This

property indicates the impact of robot geometry on the control of structural

oscillations. Example studies are provided to illustrate the physical interpre-

tation of inaccessibility of vibratory modes.

Two types of controllers are designed to control compliant manipu-

lators. These controllers are designed for compliant manipulators modeled by

either lumped or distributed parameter techniques. In order to maintain the

generality of the results, neither linearization is introduced, nor any nonlinear

term is neglected to simplify the controller design problem. The first type con-

troller is built for N-degree-of-freedom robots with known system parameters,

and several distinct control algorithms are introduced. Example simulations

are given to demonstrate the controller performance. The second type con-

troller is also built for general serial robot arms and is adaptive in nature

which can estimate uncertain payload parameters on-line and simultaneously

maintain trajectory tracking properties. The relation between manipulator

nl



motion tracking capability and convergence of parameter estimation p:'c,per-

ties is discussed through example case studies. The effect of controI ini_t:_

update delays on adaptive controller performance is also studied.
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Chapter 1

Introduction

The goal of building efficient robots draws growing attention to the

study of lightweight robotic manipulators. In order to maintain operational

precision, traditional industrial robots are built relatively rigid at the cost of

heavy weight and slow operational speed. In addition, the payload capacity

is generally limited to as small as 1% of the manipulator weight to avoid

deflections caused by inertial loading. Apparently, such robots consume large

driving power and are inefficient to operate. As a remedy, the next genera-

tion robots tend to be lighter, faster, and have larger payload-to-weight ratios.

However, a lightweight structure is subject to deformation and oscillations un-

der high-speed inertial load. Therefore, building a high precision lightweight

robot demands a thorough study of the inherent compliance problems from

mechanism design to control issues. So far, lightweight manipulators are used

mainly in outer-space exploration where inertial load and precision are not of

concern; yet, development for high precision industrial applications is still at

the infancy stage. This report will present research results on the dynamic

modeling and controller design of serial robotic manipulators modeled with

structural compliances. In this report, we will refer to this type of robotic

arms as compliant manipulators.

This work covers several major topics. Literature survey on the

study of compliant manipulators will be presented in this chapter. The



methodologiesand algorithms usedby researcherswill be summarized. The

second chapter will introduce some basic and handy tools for dynamic model-

ing of robotic manipulators. The third chapter will derive compliant manipu-

lator dynamics by both distributed and lumped parameter models. Based on

the derived system dynamics, the inherent dynamic properties will be inves-

tigated in the fourth chapter. The fifth chapter will design different control

laws for compliant manipulators with known system parameters. In the sixth

chapter, an adaptive algorithm will be introduced, which is capable of on-line

motion control and payload estimation. In order to build the adaptive con-

troller, system dynamics of uncertain parameters and an estimation method

are also presented in the sixth chapter. The final chapter will summarize

the effort of this work. Portions of this work have been reported in [Lin,

Tosunoglu, and Tesar. 1990, a], [Lin, Tosunoglu, and Tesar, 1990, bJ, [To-

sunoglu, Lin, and Tesar, 1990, a], [Tosunoglu, Lin, and Tesar, 1990, b], [Lin,

Tosunoglu, and Tesar, 1989], and [Tosunoglu, Lin, and Tesar, 1989], which.

due to their distinct approach, are not included in the following literature

survey.

1.1 Dynamic Modeling Survey: Distributed Parame-

ter Model

The structural flexibility modeling of a compliant manipulator con-

centrates on two elementary components: links and joints. Lack of structural

rigidity in link design causes link compliance. On the other hand, flexibility

of power transmission is usually the major contributor of joint compliance.

Various models are proposed by researchers to describe link and joint com-

pliances. Nevertheless, they could be categorized into two main disciplines:

distributed and lumped parameter models. Both models have been applied
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to model link compliance. However, joint compliance is always modeled by _

lumped parameter model. In distributed parameter models, a link is modeled

as a continuous beam which has infinite degree-of-freedom (DOF) oscillations.

Generally, finite assumed modes are chosen to discretize the oscillations. The

chosen mode shapes are mainly admissible functions satisfying given geomet-

ric boundary conditions. The assumed mode method not only reduces system

dimension, but also separates the spatial and time variables of each vibratory

mode, consequently, the system dynamics could be expressed as a function

of generalized coordinates composed of nominal joint parameters and vibra-

tory amplitudes. Some of the activities in distributed parameter model are

reported in this section. [Hughes, 1979] models each compliant link as a

continuous system and derives general compliant manipulator dynamics by

the Newton-Euler approach. He computes the inertial dynamic force at each

compliant link first, and then finds the compliant dynamics from flexibility

kernel. In this work, the velocity coupling terms are neglected under slow mo-

tion assumption. [Sunada and Dubowsky, 1981] use a finite element model

and the NASTRAN software package to study compliant mechanism motion.

[Book, 1984] uses the Bernoulli-Euler Theory to model a compliant link under

lateral bendings and longitudinal elongation. The rotatory inertial effect is

neglected in the system dynamics. In this work, the author uses the same

modal amplitude in all directional modal functions. The 4 x 4 homogeneous

transformation matrix is applied to perform kinematic analysis. [Low, 1987]

also uses Bernoulli-Euler Theory to build compliant system dynamics. In

his recent work, [Low, 1989] presents solution schemes for inverse dynam-

ics and kinematics. The author also discusses the assumed mode solution

under different boundary conditions. [Naganathan and Soni, 1987] analyze

lateral bendings and longitudinal elongation of a compliant link by the finite
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element approach. Following the Timoshenko Beam Theory, the rotatory in-

ertia and shear effects are included. The system dynamics are derived by

Galerkin's method. [Kane, Ryan, and Banerjee, 1987] model a spatial ma-

nipulator with a compliant last link. Instead of using the Bernoulli-Euler

Thcory, the shear and centrifugal stiffening effects are included in the study.

However, by applying the small deflection assumption, all vibratory coupling

terms are neglected by the authors. In the above examples, multi-directional

oscillations of the compliant link are considered. Interestingly, a great por-

tion of modeling and control works of compliant manipulators focus on planar

one- or two-link arms, and in these works only unilateral bending is investi-

gated. For example, [Rakhsha, and Goldenberg, 1985] model a one-link arm

in transverse bending. The compliant link is treated as a cantilever beam.

and Newton-Euler approach is applied to derive system dynamics. [Usoro,

Nadira, and Mahil, 1986] use the finite element approach to model a planar

arm lateral bending. Tile Hermitian polynomials are chosen as mode shapes.

The results are applied on a two-link planar arm example. [Nicosia, Tomei.

and Tornambe, 1986] employ monomial mode shapes up to fourth orders to

model a planar arm with lateral bending. [Benati and Morro, 1988] model a

planar link as clamped-free beam with end-point m_ss whose lateral bending

is depicted by two eigenmodes. Since two modes are suggested, the end-point

deflection and tangent angle are used as the generalized coordinates. The

model is simulated on a two-link planar arm with a compliant link followed

by a rigid link. Instead of a one-link arm, [Yuh, Young, and Baek, 1989]

model at cylindric planar arm composed of one pivot joint and one slider. The

sliding link is compliant whose unilateral bending is modeled as a cantilever

beam. Due to the sliding motion, the compliant link length changes continu-

ously, therefore, the mode shapes are normalized for a unit link length, and



only the first two primary modes are modeled. To verify their analytic model,

laboratory experiments are conducted by the authors, in which an accelerom-

eter is added to the tip of the arm, whose double integration provide the tip

displacement. The experimental results show good agreement with the ana-

lytic model. [Wang and Vidyasagar, 1988] study the dynamic model of a five

DOE mechanism which is composed of a 4-bar linkage with a rotating base.

The output link is flexible and bends in the direction perpendicular to the

plane of the 4-bar. The link compliance is defined following the Bernoulli-

Euler Theory. [Yang and Donath, 1988] model one-link arm dynamics by

considering both joint and link compliances. The link deflection is described

by the Bernoulli-Euler Theory; the modal eigenvalues and eigenfunctions are

derived based on the given geometric and natural boundary conditions. The

authors suggest that the first two modes give fair representation of link de-

flection. Their simulation results show that the first mode amplitude is about

ten times the second mode magnitude. Since both clamped-free and pinned-

free boundary conditions have been used in link compliance study, [Bellezza,

Lanari, and Ulivi, 1990] derive the exact solutions of one-link arm vibratory

dynamics by using both boundary descriptions. After comparing the solu-

tions, the authors conclude that both results are equivalent after coordinate

transformation. Another research topic in distributed parameter model is

how many assumed modes should be used so that system dynamics have an

acceptable level of accuracy and manageable size. Some works in this dis-

cipline are presented here. [Hastings, Dorsey, and Book, 1989] use balanced

realization to identify the model order required for a compliant system. They

linearize general compliant system dynamics, and by the assumption that

the linearized system is controllable and observable, the number of dominant

modes are identified from the solution of the linearized dynamic equations



by the singular values deconlposition t(,chni(lue. [Tsujisawa and Book. 19S9]

apply the reduced order method to decide ttle dominant modes of a specitic

robot called RALF (Robotic Arm, Large and Flexible) which is a two DOF

parallel mechanism with two ten-foot long links. The report suggests that

two modes for each link is optimal from the control point of view. In their

experimental study, it is observed that the spectrum ratio of the first mode to

the second mode is ten to one. Also, [Krishnan and Vidyasagar, 1988] derive

a reduced order model for a single-link arm by Hankel norm minimization.

Finally, for on-line motion control, the vibratory states need to be identified.

Regarding this subject, [Hastings and Book, 1986] use strain-gauge measure-

ments and a reduced order observer to reconstruct the modal amplitudes and

velocities, and [Hastings and Ravishankar, 1989] suggest several link deflec-

tion measurement methods and discuss the effect of the measurement tech-

nique on model order estimation. According to the works surveyed in this

report, various deflection measurement equipments have been used, which

include strain gauges, accelerometers, laser-interferometers, photodetectors,

piezoelectric detectors, and vision systems.

1.2 Dynamic Modeling Survey: Lumped Parameter

Model

Ideally link oscillations are composed of infinite modes, yet, the first

fundamental mode generally dominates most of the elastic energy as reported

by [Tsujisawa and Book, 1989] and [Yang and Donath, 1988]. Additionally,

relatively high energy is required to bend a robotic link into high order mode

shapes. Also, structural damping makes higher modes difficult to detect:

therefore, a lumped parameter model is often used on compliant links to

create an efficient dynamic description suitable for real-time motion control.



Besides modeling links, a lumped parameter model is frequently used to define

joint compliance. In a lumped parameter model, each structural compliance

is replaced by an equivalent spring. The two types of springs mostly used are

translational and torsional springs. The former causes linear deflection and

the later creates torsional deformation. The stiffness of the modeled spring

is evaluated by either elemental stress-strain relations or by experimental

identification. Some representative works are listed below.

[Tesar, 1978] uses lumped parameters to model an N DOF pla-

nar arm with compliant links. The loads at the distal end of each link are

analyzed first, then the subjected deformations are derived from a static can-

tilever beam deflection relation. [Fresonke, Hernandez, and Tesar, 1988] fur-

ther extend this approach to cover the deformations of a spatial mechanism

with seven possible deflections at each link, i.e., one joint deformation and

six distal end deflections and twistings. Since static load and deformation

relations are used, this approach is termed quasi-static deflection analysis.

Since quasi-static deflection is considered to be the major structural distur-

bance to end-point precession, it should be compensated for during motion

control. Therefore, [Hernandez, 1989] develops real-time computation soft-

ware to evaluate the end-effector deflection under inertial and external loads.

In the lumped parameter model, the structural stiffnesses could be evalu-

ated from elemental stress-strain relation. However, for an assembled robot,

the elemental stiffness matrices are difficult to obtain analytically. There-

fore, metrology approaches are applied to obtain the modeled spring stiffness

values. [Behi, 1985] experimentally identifies the lumped parameters of a T3-

776 robotic manipulator. Modal analysis is employed to identify the natural

frequencies and modal amplitudes of the excited manipulator. The experi-

mental data are fed into the lumped model to obtain system parameter values.



Instead of using frequency domain analysis, [Sklar, 1988] applies end-point

loadson a static T3-776. A forcesensorattached to the wrist reads th_ fore,,

and torque componentsalong eachorthogonal direction. The resultant hand

deflections are measuredby twin theodolite systems. From both force and

deflection data, the global compliance matrix could be obtained, which in

turn producesthe modeledstiffnessvaluesafter inversekinematic operation.

In order to obtain averagedstiffness values, the tests are repeated at dif-

ferent robot configurations and external loads. Similar metrology activities

are reported by [Good, Sweet,and Strobel, 1984]and [Elmaraghyand Johns,

1988].The lumpedparametermodel is alsoapplied to the study of the Spatial

Shuttle Remote Manipulator System (RMS). [Book, 1979] models the ItMS

as a massless chain connecting two end-point masses, i.e., the Orbiter and

payload. The global hand compliance matrix is derived by using 4 x 4 ho-

mogeneous transformation matrices. Similarly, [Sellhorst, 1982] describes the

compliances of the RMS as three linear torsional springs and studies payload

motion response subjected to the thrust fired on Orbiter. More studies on

lumped parameter model could be found. For example, [Huston, 1980] mod-

els multibody dynamics by assuming that each pair of bodies is connected

by three translational and three torsional springs. The system dynamics are

derived by Kane's partial velocity and partial angular velocity approaches

along with the principle of virtual work. Tile result is applied in [Kelly and

Huston, 1981] to derive manipulator dynamics for a six-link arm. In this

work, the stiffness values are derived from elemental stiffness relations. The

elemental stiffness matrix is also used by [Shahinpoor and Meghdari, 1988]

to derive the global hand stiffness matrix. Instead of using one set of lumped

parameters for each compliant link, [Huang and Lee, 1988] suggest to divide

a compliant link into several lumped parameter segments to obtain a more



accurate model.
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1.3 Survey on Compliant Manipulator Control

Besides dynamic modeling, a great portion of research on compli-

ant manipulators is carried out on motion control. However, unlike modeling

techniques, various controllers have been designed and tested numerically

or experimentally. According to the control algorithm used, the following

surveyed reports are classified into optimal control, singular perturbation

method, external feedback linearization, inverse dynamics, quasi-static deflec-

tion compensation, resonance avoidance control, lincarized system dynamics

control, and adaptive control techniques.

1.3.1 Optimal Control

One special character of one-link flexible arms is that system dy-

namics contain no coupling terms. Therefore, after modal decomposition,

the system dynamics arc reduced to a linear time-invariant system. From

that process, many researchers have discovered an interesting property that

for one-link arms the transfer function between tip output and actuator input

has non-minimum phase zeros. This means that for a given tip trajectory, thc

inverse dynamics could not be defined directly because the inverse transfer

function is unstable. Hence, optimal control is used by some researchers to

control the tip motion of one-link arms. One of the most famous studies in

this area is reported by [Cannon and Schmitz, 1984] who model a one-link arm

as a pinned-free beam. The Bernoulli-Euler Theory is used to derive system

flexibility dynamics. Then the dynamic equations are decoupled by orthogo-

nal modes. The decoupled system parameters are identified experimentally.



10

Finally, the tip motion is controlled by an optimal algorithm. Similar works

on one-link arm are reported by [S_d(awa, Matsuno, and Fukushima, 1985],

[Chassiakos and Bekey, 1986], [Lee and Castelazo, 1987], [Pal, Stephmlou,

and Cook, 1988], and [Biswas and Klafter, 1988]. Optimal control is also ap-

plied on a nmlti-DOF pla_lar mechanism containing a compliant beam as the

last link, such as rel)orted by [Matsuno, Fukushima, Kiyohara, and Sakawa,

1987] and [Schmitz, 1989]. However, in both works, flexibility dynamics are

linearized around terminal static states.

1.3.2 Singular Perturbation Method

Compliant mmfipulator dynamics are composed of two parts: on("

basically describes the dynamic balance of driving joints, called the rigid part,

dynamics, and tile other depicts tile dynamic interactions due to structural

flexibility, or the vibratory part dynamics. Each part contains t('rms of nom-

inal and vibratory parameters. In the singular perturl)ation method, it is

assumed that the solutions ()f the vibratory part (lyxlami(:s, a set of second

order differential equations, are stable and called iutcgral manifold._. Becaus("

of the nonlinear couplings and kinematic dependence, it is difficult to solve,

integral mmfifol(ts explicitly. But it is possible to find their al)l)roximatic)ns

l)y expanding the vibratory dynamics arotmd the rigid body mode 1)y using

th(; Taylor series method. If the structural COml)lianc('s are small, this al,-

proximation will produce the major part of the integral manifolds ill terms of

rigid body parameters. A back substitution of these vibratory mode solutions

into rigid part dynamics converts all vibratory parameters into rigid body dy-

namic paxmneters. At this point, any control algorithm developed for rigid

mmfipulators could be applied on the rigid part dynamics. In this process, the
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integral manift)lds a.rc assumed stable, ther(:fore, th('y ar(_ not consi(lt'rcd ill

the rigid part control design. However, the vibr;_tory modes do not ncccssilr-

ily slide on the integral manifolds, hence, a small 1)erturl)ed control input is

applied to force the vibratory modes to track the integral manifolds, hi doing

so, it is assumed that the perturbed inputs are so small that it will _ot affect

thc rigid part's dynamic response. The drawback of singuh'u' perturbation

is that in approximating the integral manifolds high order dynamic parame-

ters are required, for example, fourth order dynamic parameters arc used to

produce the first order approximation. For a multi-DOF manipulator, it is

highly demanding to derive such high order dynamic parameters. Therefore,

this method is used mainly on simple systems such as one-link arms modeled

with link or joint compliance. Some examples of this specific subject can

be found in [Khorasani and Spong, 1985], [Marino and Spong, 1986] [Spong,

Khorasani, and Kokotovic, 1987], and ISlotine and Hong, 19861 for one-link

arm with a compliant joint; also [De Maria and Siciliano, 1987], [Siciliano and

Book, 1988], and [Khorranli and Ozguner, 1988] for one-link arms with link

compliance. In the last thrce reports, the authors modcl link compliances by

using the Bernoulli-Euler Theory with clamped-free boundary conditions.

1.3.3 External Feedback Linearization

According to [Su, 1982], a nonlinear system could l)c converted i_lt()

an equivalent linear system provided that system dynamics satisfy certtdn

given conditions. The transformation process is called diffeomorphic coordi-

nate transformation, and nonlinear system rank and involutivity conditions

need to be checked over a special set of vectors derived by Lie brackets to

ensure existence of a nonlinear transfer function. Provided that the transfor-
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mation exits, then the' mmfipulator dynanfics could 1.' ,'xpre,_s_'_l ill t_'rlll ,,t" _,

linear, time-invariant, controllable system whose controller is easy to design.

Oncc a control law is developed for the equivalent linear system, the non-

linear system controller is obtained by an inverse transformation. Although,

the conditions could be checked by tedious but straightforward differentiation,

there is no simple rule guiding the selection of nonlinear transformation func-

tion, or diffeomorphism. The nonlinear compensation, or computed torque

method, of rigid manipulator control is a special application of this technique.

ttowever, for compliant mmfipulators, this approach is still at a conceptual

stage and is used only on one-link arms with link or joint compliance, such as

reported by [Slmng, 1987] on _t om,-link arm with compliant j,_int, [Nicc,sia,

Tomei, and Tornambe, 1989] on one-line arm with flexible link, and [De Lm'a,

Isidori, and Nicolo, 1985] on conceptual design.

1.3.4 Inverse Dynamics

Inverse dynanfics lmsically is an open loop contrail sclwm< F_,r a

given hand trajectory, the required driving torques are c(,ml)llted along the,

trajectory to ensure precise tracking. For rigid manipulators, inverse (lynalll-

its is mainly solving the inverse kinematics 1)rol_lenl and is acCOml_lish,,(l il_

one iteration, tlowew'r, for compliant lnmfil)ulators , structural comptiam',,

causes disturbances to hand motion, and due to the nonlinear int('racti_,t_

between nominal and vibratory modes, more than one iteration is g_'nerally

required to find the final driving torques. For example, in the first iteration,

rigid m,'mipulator assumption is used to find approximated driving torques.

The torques are applied on the compliant manipulator to solve the associated

structural deformation. Then the resultant hand deflections are compensated
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by adjusting nominal joint motion to maintain tracking precision. The driving

torques of compliant manipulators are evaluated from compensation results.

The process is repeated until an acceptable level of precision is reached. This

technique is applied by [Asada, Ma, and Tokumaru, 1987] on a two-link pla-

nar arm. A similar approach is found in [Dado and Soni, 1986] for multi-link

arms modeled by tile finite element method. Instead of time domain al)-

proach, [Bayo and Moulin, 1989] find the transfer function bctwccn the tip

and actuator input of a one-link flexible arm in the Laplace domain. Once the

transfer function is defined, the actuator input is computed by convolution

integral for a given tip trace. [De Luca, Lucibello, and Ulivi, 1989] use inverse

dynamics to track various output points othcr than the cnd-cffector tip. In

their algorithm, the number of output states must equal to that of nominal

joints. The tracking stability is also analyzed in this report.

1.3.5 Quasi-Static Deflection Compensation

Quasi-static deflection is considercd to be the major contributor of

structural deformation. Some reports suggest compensation of quasi-static

defection by either off-line trajectory planning or control-in-the-small algo-

rithms. [Gupta, 1987] studies stationary compliant maaaipulator deflections

under external forces. The hand deflections are compensated by adjusting the

robot configuration. [Pfeiffer, 1989] divides the problem of compliant robot

control into three stages. The first stage plans off-line optimal trajectory for

rigid manipulators and computes the associated driving torques. The second

stage finds the associated structural quasi-static deflection and adjusts joint

variables to compensate the deflection. The last stage linearizes system dy-

namics around the terminal point of task trace and builds an on-line controller
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for the linearized time-invariant system. This control algorithm is tested on a

two-link plaa:aa"arm modeledwith link and joint compliances. In control-in-

the-small technique, a mechanismperforming fine-tuned motion is added t,_

compliant manipulator design to compensatestructural deflection. [Zalucky

and Hardt, 1984]design a link composedof two parallel beams. The distal

endsof the beams are jointed by a hydraulic servo. The rigidity of the link

could be increasedby regulating the hydraulic servo. [Oliver, Wysocki, and

Thompson, 1985]replace one grounded pivot joint of a four-bra-mechanisnl

by a fast moving slider to actively compensatethe output link deflection.

[Tlusty and Wegerif, 1986]usea cam mechanismto compensate the deflec-

tion of a T3-776 robot during cutting process. The robot is modeled by a

lumped parameter model. The global hand stiffness matrix is derived first,

then hand deflections are computed form the stiffness matrix together with

cutting forces measured at the wrist. The added cam then compensates the

calculated deflection by providing the cutter with a fast lint small sliding nlo-

tion. In these reports, the fine-tuned lnechanisms are lilnit('(t to one (tegr('(_

of freedom. A micromanipulator capable of six-DOF tin(:-tmmd motion is

designed and analyzed by [Hudgin and Tcsar, 1988] and [Han, Traver, and

Tesar, 1989].

1.3.6 Resonance Avoidance Control

A group of activities on compliant maalilmlators are devoted to struc-

tural resonance study. [Cleghorn, Tabarrok, and Fenton, 1984] analyze the

influence of running speed on the stability of a compliant four-1)ar mecha-

nism. They solve the eigenvalues of system dynamics and find the associated

running speeds. Through eigenvalue locations, the stable and unstable op-
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eration speedscould be identified. In order to study the induced geometric

stiffness effects on system stability, [Anderson, 1985] linearizes system dy-

namics around an equilibrium point and studies the effect of external forces

on system stability. The manipulator usedin this study is a three-link planar

arm modeled with resilient joints. [Rivin, Zeid, and Rastgu-Ghmnsari, 1985]

model the compliances of a two-prismatic-joint planar arm by the lumped

parameter approach. Two translational and one torsional springs are added

to each joint of the arm. By neglecting vibratory velocity terms, the sta-

ble eigenvalues of the system dynamic equations are mlalyzed to examine

the effect of nominal joint velocity on system stability. [Streit, Krousgrill,

and Bajaj, 1986] linearize compliant manipulator dynamics and analyze sys-

tem stability under repetitive operation from tile eigenvalues of the linearized

system. They apply this technique to a two-link planar arm modeled with

lumped parameters. [Chiou and Shahinpoor, 1990] study tile force control

effect on system stability. They model two-link planar arm flexibility by the

Bernoulli-Euler Theory. Hybrid force/position control is also adopted to form

a closed loop control action. By slow motion assumption, the nonlinear terms

axe neglected, then the closed-loop system dynamics are linearized around an

equilibrium position. To investigate system stability, the eigenvalues of the

final linear dynamic equations are analyzed over various force feedback gains,

force sensor stiffness, and structural flexibility. Other than stability study,

[Singer and Seering, 1989] suggest using a counteractive oscillation to can-

eel existing structural vibration. They also suggest that for bang-bang type

control the rectangular input commands could be preshaped to remove sen-

sitive frequency contents. However, the authors limit their study to a simple

mass-spring-damper model.
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1.3.7 Linearized System Dynamics Control

Duc to tile nonlinear coupling b('twe(_n nonlinad a_It(l vibratory ll_o(l('s,

building a controller for compliant mmlipulat()rs is a (litIiclllt and challellgiug

t_sk. However, it is suggested that compliant nlanipulator control prol)lem

could bc simplified by liuearizing compliant systenl (tyn_mics. [Chalh()_ll) _tnd

Ulsoy, 1987] develop a controller for a sph('rical coor(linate rc)l)ot with tw()re','-

olutc joints and one prismatic joint. The prismatic joillt is flexible and 1)oth

principal lateral bendings are depicted by the first m_)(les. The conti()llcr is

built on linearized system dynamics, and pole placement technique is _q)plied

to locate the feedback gains. This algoritlun is e.xperinlentally tested ()n a

one-link plmmr arm. One special feature of this work is that observation and

control spillover effects are examined. [Oosting and Dickerson, 1988] st u(ty

the motion response of a two-link planar arm. Lumped parameters arc em-

ployed to model both link and joint coml)li_ulces. The system dynamics _','

linearizcd about th(_ desired motion, and a (:oHh()l law for the lineage syst,,lll

is designed with fee(ll)_ck and fccdf()rw_u'd ('Onll)()1_('nts. [Henri('hfr('is_', 19S8)

studies the collt, rol of a Ilmafil)ulator modeled with thl(_(' resilient joints _lll_l

tWO compliant links. The system dynalnics arc lincauiz('d ;_round an Ol)(.'nding

point. The controller fc'(;(lforward a ll(l f('.(',(ll)a('k gains ()[ th(, lin('ar syst(;lll _1('

selected fi'oin _ sp(,ci_d criterion r(.'l)oi'ted in this work. {N:_th;,n _ul(t Sil_gh,

1989] divide the (:olitrol of robotic arm with compliant liHks int() two l)h_s('s.

In the first 1)tmse, systen_ x'il)rat(_'y m()ti()n is n(_gl('(:t('(t, _(t _()min_d joi_t_

_'e controlled 1)y variable struct,u'e (:,)ntrol law. The s('('_)_(l l)hase st;__s

when rol)ot reach('s the vicinity of ternfin:fl 1)oint. Th(" system dynamics ;_r('

then lincarizcd around the terminal point. A vibration1 sh_l)ilizing c()ntroller

is designed for the linear time-invariant system by pole 1)l_ce_ncnt technique.
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At this stage both nominal and vibratory controllers are executed, and it is

assumed that the vibratory controller is relatively small and does not affect

nominal motion control.

1.3.8 Adaptive Control

The adaptive control techniques applied on compliant manipulators

include self-tuning regulator, model reference, and gain scheduling methods.

In self-tinting approach, [Yang and Gibson, 1989] adaptively control a two-

link planar arm with a flexible beam as the second link. The authors assume

that system dynamics could be described by an autoregressive moving-average

(ARMA) model. Then, the coefficients of the ARMA model are estimated

on-line. The control algorithm of the ARMA model is one-step ahead opti-

mization. Similarly, [Yurkovich, Tzes, Lee, and Hillsley, 1990] define a two-

link planar arm modeled with link compliances by an ARMA model, and

both pole placement and one-step ahead optimization are cmployed to design

control inputs. [Yuh and Tissue, 1990] control a two-link planar ann with

joint compliances but rigid links. The continuous system dynamics are lin-

earized around a given trajectory and then converted into discrete time form

by Euler's method. The system parameters are assmned unknown and esti-

mated on-line. The control inputs are defined by pole placement technique.

[Cetinkunt and Wu, 1990] use a Lattice filter to estimate the coefficients of an

autoregressive model which represents system dynamics of a one-link flexible

arm. Two controllers are proposed: fixed-pole PD controller and one-step

ahead optimization. Similar self-tuning control could be found in [Koivo and

Lee, 1989] and [Chen and Menq, 1990]. A common assumption used in self-

tuning regulator design is that the estimated system parameters vary slowly
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in comparisonwith state variables. Also, sincein the ARMA model nonlinear

dynamic parameters are replacedby simple lumped coefficients, information

suchaspayload mass,centerof masslocation, and momentof inertia are dif-

ficult to extract fl'om on-line estimate data. Regardingother adaptive control

applications, [Yuan, Book, and Siciliano, 1989]usemodel referencemethod

to control a one-link flexible arm to behave like a dc'cout_hxt,stable, line,at.

time-invariant system. In gain schedulingcontrol, [Nelson and Mitra, 1986]

compute off-line the optimal feedbackgains of a single-link arm at different

payload magnitudes. During on-line control, the uncertain payload is esti-

mated by the gradient method, then the optimal feedbackgains are adjusted

accordingly with the estimated payload value. In this work, link compliance

is modeled by the lumped parameter method. Similar work could be found

in [Menq and Chen, 19881and [Yurkovich, Pacheeo,and Tzes, 19891.Both

works focus on control of single-link arms modeled as distributed systems.

However, the former usesa gradient method to perform on-line payload esti-

mation, while the latter identifies the payload by an accelcrometerattached

at the tip of the link. A detailed survey of adaptive control of rigid robotic

mtmipulator is reported by [Tosunogluand Tesar, 1988].

1.4 Other Approaches

Besides the efforts reported above in modeling and control areas,

progress is also reported on strengthening a lightweight mmfipulator by strut-

turn design. For example, [Rivin, et al., 1987] use combinational links to

increase structural rigidity and reduce inertial weight. In their design, a link

is composed of two segments made of steel and aluminum separately. As sug-

gested by the authors, the optimal design shows a reduction in link deflection
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and driving torque. Instead of using traditional metal material, [Liao, Sung,

and Thompson, 1987] design mmaipulator links by using composite materials.

Link stiffness and damping are optimized by selecting proper design param_.-

ters for the fiber material, the type of matrix, fiber orientation in each ply of

laminate, the fiber volume fraction, and the stacking sequence of the plies. A

compaxison between aluminum and composite laminate arm is conducted by

[Choi, Thompson, and Gandhi, 1990]. The authors compare the performance

of both arms through the motion control of single-link arms. According to the

experimental results, the composite arm shows less settling time and smaller

overshoot and consumes less torque.

Despite the extensive effort reported above to solve compliant ma-

nipulator problem, most of the approaches are still in early development

stages and a great portion of them are limited to simple robotic structures

such as one-link arms. For example, development of a simple, general robot

controller suitable for both distributed and lumped parameter models have

not been pursued. Additionally, the impact of robot geometry on vibratory

mode control has seldom been investigated. Also, the majority of adaptive

control of compliant malfipulators focuses on one- and two-link planar arms.

A more meaningful problem, adaptive control of spatial compliant manipu-

lators, needs to be fully explored. In this report, we will develop controllers

applicable to both lumped and distributed models. The effects of kinematics

on vibratory mode control will be analyzed for a general compliant ma_fipu-

lator. Finally, an adaptive control law capable of on-line payload estimation

and motion control will be designed. Case studies will be used to examine and

illustrate our design and analysis throughout this report.



Chapter 2

Dynamic Equations of Rigid Robotic Manipulators

Robotic system dynamic equations will 1)e dcriw,(l in this chapter.

Ill tile following derivations, structural compliance is negh,cted to facilitat,'

the introduction of several handy tools that are essential to this report. The

first section will present coordinate transformation matrix that transforms

between local and global coordinate frames. Then two properties, the first

and second order influence coefficients, are defined in the second and third

sections. These two properties have compact and transparent nature that

makes system dynamics easy to derive and verify. Finally, robotic system

dynamics are derived by using the Lagrange method and fiu'ther verified by

the Newton-Euler method.

2.1 Coordinate Transformation Matrices

One of the frequently used tools in robotic research is coordinate

transformation. Generally, a local frame is assigned to each link of a given

robot. This local frame is useful in defining physical properties such as the

junction point to the next link, the center of mass location, moment of inertia,

and so forth. But to find the gross motion of a robot and the required driving

force or torque, those physical quantities eventually need to be expressed in

a common frame. Coordinate transformation matrix is a tool developed for

this purpose. Figure 2.1 shows a floating link and its local coordinate frame

2O
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{.i:,!), i}, where 2, _), and i are three unit -/_a vectors defined in tile global

system {X, Y, Z }. A point p on the link is expressed by three local coordinates

rat

r t = r v E R 3

rz

where the superscript l indicates that tile vector is defined in tile local fl'ame.

Th(' same vector in the glol>al fi'ame is defined by

?'x ]
F2

dd r/ (2.1)

In the above expression, TI E 7_.3xa is the transformation matrix converting

local coordinates to global values. Since the column vectors of Tt are unit

and orthogonal, T_ is a orthogonal matrix, that is

= 2" (2.2)

where 2" is a 3 x 3 identity matrix, therefore Tt T = Tt -1. Apparently, to

construct a coordinate transformation matrix, the unit vectors of a given

local frame need to be identified first. Three basic rotational matrices are

often used in defining the local unit vectors. They are derived as follows. In

Figure 2.2, o61, £, and o63 represent three orthogonal unit vectors, where o6_

and $2 rotate an angle 0 about $3 to the new orientations S[ mad S_. By

simple inner product operation, the new frame {,_, o6_, S:_} could be expressed

in terms of the original frame { S,, .-_2, $3} as

_"1 = cos 0o61 + sin 0S2
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Figure 2. I Local and Global Coordinates of a Robotic Link
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Figure 2.2: Coordinate Transformation Between Two

Orthogonal Frames
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$_ = - sin 051 + cos 0S2

S._ = $3 (2.3)

Let & represent one of {X,Y, Z}, and S_ and ,_2 rcprescnt the other two by

following the right-hand rule relationship that _51 x $2 = $3, then the three

rotational matrices, Rot(S3, 0), converting {S_, S_, S_} back to {o_1, $2, S'3}

are

Rot(X,0) =
1 0 0
0 cosO -sinO

0 sin 0 cos 0

Rot(Z, e)=

; Rot(}; e) =

cos0 -sin0 0

sin 0 cos 0 0

0 0 1

cos 0 0 sin 0

0 1 0

-sinO 0 cosO

(2.4)

where the unit vector definitions X = [1 0 0] r, Y = [0 1 0], and Z = [0 0 1] 7`

axe used in the above derivations. In the above equation, Rot(oba, 0) denotes

that the new fl'ame comes fl'om a rotation of 0 angles about an old fl'ame axis

053 where ,_3 e {X, Y, Z}. Notice that in each rotational matrix, the column

vectors are exactly the unit vcctors of the new fl-ame defined in the last

frame, so they are transformation matrix. The application of these rotational

matrices is illustrated in the following example. The original fi'ame {X, Y, Z}

rotates an angle a about X to a new frame {X _, Y', ZI}. Then the new fl'ame

rotates an angle 0 about Z' to the third frame {X", Y", Z"}. To find a matrix

T transforming the third frame back to the original frame, the rotational

matrices axe multiplied togethcr as

T = Rot(X, a)Rot(Z', 0) (2.5)

Notice that the order of matrix multiplication must be obeyed in computing

T. Another example is to find the transformation matrices of the three-Iink

arm shown in Figure 2.3. In this model, each link is labeled with a local
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frame {Yi, Yi, Zi}, i E {1,2, 3}, where the first joint is revolute and rotating

about Z1, the second joint is prismatic and sliding along Z2, and the thhd

joint has Z3 as pivot axis. Let {Xo, l:,, Zo} denote the global flame, and T,

be the transformation matrix converting the ith frame to the global frame.

Then

Tl = Rot(Zo,0t)

T.2 = T,Rot(Y,, 9O)

Ta = T2Ilot(X,2,90)Rot(Z_,0_) (2.c)

Let {:i:';, t),, 5,} donote the refit _.:' voctors of {X,, ]], Z,}, i E {1,2,3}, then

the above transformation matrices give the unit vectors in terms of global

coordinates by the rcla.ticmshil)

T, = [:_,_!),_,] (2.7)

2.2 The First Order Influence Coefficients

In this s_.cticm, two compact n_tat.hms will 1_o introdm'od to ¢lefin, _

the translational and angular w'locitios of a moving robot. In Figm'o 2.3, l,'t

P E 7¢a 1)e tlw gh)l)al 1)ositi(mal v('ct,_r _)f a given lmint, I' within tho payload,

and also let • C "Px.:* lw the Euh'r ant_h's <ff the Imyh)ad. 'l'hen t.l_' veh,cili_,s

of point p are

and

I; = [0o_ 0o.200._] [_

%_ re,/) (2.s)

o, oq, 0¢10,b = [_g_,o0_ 003

dod _c,,O (2.o)



25

ZI=Zo 13

1 I 02

P

X I Z2

Z3

X2 X3

Figure 2.3: 3-Link Rigid Robot Modeled with Local Coordinate

Frames
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where 0 = [6q 0; O.j]"r C R. 3, and rG v C _3x,_ is defined as the fir_;t ,,,r,!cr

transla.tional influence coefficient, or translational G function, of p. Sinfilarly,

RG p _ "]_3X3 iS the first order rotational influence coefficient, or rotational G

function, of p. The details of rGp are given next. According to Figure 2.3,

d

-- dt(It._l + 02_-,2 + 13!):_)

: l,,i_,+ 4._e .+o_+e+ t._}_,

= [(._,x P)_ (_:,x z._:,)]o

= "rG,fi (2.10)

A comparison between Equations 2.8 and 2.10 produces

OP OP OP
^

OOt -- -gl x P ; 00.2 z_ ' 003 z3 X t393 (2.11)

Apparently, the influence of a unit 01 on /5 is the cross product of the joint

1 1)iw_t axis and tim moment arm between joint 1 and p. Similarly, joint 3

is rew)lute, so ('very unit 0:_ adds a i::_ × 130a vector to /5. Since joint 2 is

prismatic, the coutrilmtion of unit /).2 to /5 is simply i2. Such results could

be explained by the definition of partial differentiation. Recalling that

or or)
OOl - (00, Io,..... ,,,,,,,.o.,=,.,,,,,o,,,

which means that the aluwe partial _per_d.ion is taken at fixed 02 and O:l.

In Figure 2.2, the effect of unit variation of 01 on P with fixed 02 and 83 is

exactly zl x P. Similar explanations could be given to the partial operations

on 02 and Oa. Following the interpretations and also example results, a general

translational int-htelme coefficient table is constructed below.
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Table 2.1 Translational G Functions:

ith Joint Type (TGi) i

Revolute (R) Six rij i < j

R 0 j<i

Prismatic (P) _6i i < j

P 0 j<i

TGj
Conditions

In the above table, TGj denotes the translational G flmction of any point on

the jth link and ( TGj)i is its ith column vector. Also S_ is the unit vector

of the ith joint axis, and rii is the positional vector from the ith joint to

the particular point on the jth link. For aal n-link robot, TGj E 7¢ax", and

i,j E {1,2,..., n.}. Equation 2.11 results could be verified directly from Table

2.1. A similar table can be built for rotational G function, but the details of

Equation 2.9 are worked out first.

,b =

(2.12)

The above results could be checked easily. Since each revolute joint con-

tributes to '_ an angular velocity aro,m(l the joint axis, -_l and ,_3 constitute

separately the first and third colunm of nG1,. However, joint 2 is prismatic

which does not change the orientation of robot, so the second cohmm of itGp

is a null vector. The content of a gencrM rotational G function is tabulated

below.

Table 2.2 Rotational G Functions:

ith Joint Type

R

R

P

P

(
L
0

0

0

'Conditions

i_<j
j<i

i<j

j<i

where i,j E {1,2,... ,n} for an n-link robot. Obviously, only revolute joint

contributes angular motion to a given robot. However, a revolute joint affects



28

only the part of robot located at the downstreamof the particular joint. This

meansthat if the ith joint is revolute then it only affects the orientation of the

jth link with every j > i, otherwise ( nGs)i = 0 for all i > j. This simple but

important fact will be applied to the derivation of the second order influence

coefficients introduced in the next section.

2.3 The Second Order Influence Coefficients

In the last section, G functions arc introduced from velocity deriva-

tion. In this section, the second order influence coefficients, or H functions,

will be defined from acceleration equations. First, the translational wflocity

of the three-link example, Equation 2.8, is diiS'rentiated with respect to time

which produces the translational acceleration

d OP ,1_0I d OP •

P = ,,.a]) + ,,.d,,O = ,,,C,,/_ + [--/7(N- ) i_(N- ) _(_-g-_)]0

O_ P 031" 021"

.. OOkO01 00%001 OOaflO_

= ,l,C;,,O+ [0, o., o,p o,, O
OOkO02 ,90%00_ 004.002

O" l' c')"P 0'_1"

OOl 003 O0_OOa 003003

d,j "l'Cpg + or THpO (2.13)

where THp is a 3 x 3 x 3 matrix and is defined as the second order translational

influence coefficient, or simi)ly translational H flmction. For an n-link robot,

THe, 6 T¢3×"×"; furthermore, let ( THe)k, be the kth row and ith cohmm

element of THv, then

c92p

( "trip)k, - OOkOOi 6 r¢ 3

which means that THv is a Hessian matrix. The entries of why in Equa-

tion 2.13 ea'e developed in the following equations. The first column of THp
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is obtained by the relation

d z
= _-(._, X 19

= _._ x R+._ x P

&x(_,_xP) ]
= [o,o_&] _,,x _,_ J& x (._3 x 13_3)

(2._4)

and

of TH w Similarly,

d .OP) = -

= _1_ x _2

= 0_" 0

0
(2.15)

d OP d ^

-_(-_ ) = -_(z_ x t_O_)
..t

= z._x&G+_3x&_

= &(_., x _.z)x hf/3+ _ x &(o,_.,x ,)._+ o_._x G)

= o,l_[(_,,x _,:,)x ,)_+ _,_x (_, x ,):,)1

+ 63t_3 x (_ x _3) (2.16)

The last equation could be further simplified by using the vector triple prod-

uct identity that a x (b x c) = (a. c)b- (a. b)c for may T¢3 vectors a., b, c defined

in an orthogonal frame. Therefore, from Equation 2.16,

(_,x &) x ,)_+ _ x (_, x 03)

= -(_. _,_)_,,+ (_. _,)& + (&. _)_'1- (_'_.&)O_

= _-, x (._3 x Os) (2.17)

where _ = 0 and the second vector in the above equation is the first column
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and hence

d OP 0T[ "_1X (_'3 X /3_)3) ]
0 (2.18)

_(°-G_)= s_x (s_x l_,#_)

By combining the above results, THe, is given by

O2 p 02 p 02 P

001.00_ 00_00_ OOaaO01
OJP O*P O_P

THp = OOkO02 00_002 OOaO02
O_p O_p O_p

OOt 003 002 OOs 003 003

[ _'1 X (Zl X P) _'1 x _'2 Zl x (_'3 x 13y3) ]

= -;1 x _2 0 0 (2.19)

s_ x (_3 x 1303) o s3 x (S3 x la03)

Actually, following the kinematic relation of a given robot, the entries of a

general translational H function could be constructed directly from the next

table.

Table 2.3 Translational H Functions: TH.i

kth

Joint Type

R

R

R

R

P

P

P

P

R

R

R

P

P

ith

Joint Type

R

R

R

R

R

R

R

R

P

P

P

P

P

( TGi)i

Si X t'ij

#i X Vij

Si X 7"ij

0

Si x Fij

Si X Fij

Si X Fij

0

#,

0

#,
0

( THj)ki

_'_x (.gkx ,'kj)
0

0

0

_, x #k
0

0

..gkx #i
0

0

0

0

Conditions

k<i<j

i<_k<_j

i<_j<k

j < i, all k

k<i<_j

i<k<_j

i<j<k

j < i, all k

k<i<j

k >_ i and j >_ i

j < i, all k

i < j, all k

j < i, all k

In Table 2.3, THj represents the translational H function of a given point

in the jth link, Si and Sk are respectively the ith and kth joint axes, rtj

is the position vector between joint t and the particular point on link j,

where t = i,k, and ( THi)ki E 743 is the kth row and ith column element
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of THi. For _m n-hnk robot, k,i E {1,2,... ,n}. In the third column of

Table 2.3, the TG i listed in Table 2.1 axe repeated for clarity. Obviously, the

values of ( THj)k_ rely on the geometric location of link j and joints i and

k as well as the joint types of i and k. Notice that THj is symmetric, i.e.,

( rHy)k; = ( THi)_k, which could be observed from Equation 2.19.

From Equation 2.12, the angular acceleration of point p is

(2.20)

where

RHp

m
n

OaO 020 0_@

OOt.aOl aO_OOt _0_0;

00L802 00_,80_ aO_80_
0_@ 0"@ 0"@

003 003OOz003 OO_00_

0 0 _1x_3

0 0 0

0 0 0

(2.21)

Similar result could be obtained from the following rotational H function

table.

kth

Joint Type

R

R

R

P

P

P

R

Table 2.4 Rotational H Function:

ith

Joint Type

R

R

R

R

R

P

P

( RGi)_

0

0

0

0

( RHi)_

x
O

0

0

0

0

0

RHj

Conditions

l_:< i <j

k >__i and j > i

j < i, all k

i <_j, all k

j < i, all k

all i,j, k

all i,j, k

As mentioned before, a prismatic joint does not change robot orientation, so

( RHj)ki = 0 when the kth or ith joint is prismatic. Also, a revolute joint

only affects the motion of its downstream links, so ( RHj)ki -- 0 when the kth
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joint is revolute and k > i. This simple relation m_d_es nHj asymmetric as

shown in Equation 2.21, i.e., ( nH.i)k i # ( RHj)ik, although RHj is a Hessian

matrix.

2.4 The Lagrange Dynamic Equations

The G and H flmctions defined in the last sections will be very

handy in formulating the robotic system dynamics that will be derived by

the Lagrangc method iu this section. For an n-link robot, let vi denote

the generalized actuator force at the ith joint, that is, when the ith joint

is prismatic then vi represents the joint actuating force, or, if the ith joint

is rcvohtte then vi is the joint driving torque. Also, let Oi bc the ith joint

displaccment, and 0 be an n-dimensional vector with 0i as the ith element.

Then the Lagrangc dynamic equations arc given by

d OKE OKE OPE

oo, + oo---Y= (2.22)

where NE and PE are system kinetic and potential energy separately. In

the following derivations, only inertial dynamics arc considered, and actua-

tor forces are the major forces driving the system. The dynamic equation

derivations will be divided into kinetic and potential energy parts.

2.4.1 Lagrange Dynamics of Kinetic Energy Part

For a general serial robot, let Pj be the center of mass location of

the jth link, and <_j be the angular velocity of the same link. Both Pj and

_j. are T_3 vectors measured with respect to a given global frame. Then the

kinetic energy has an expression of

KE = [mjpTpi + (¢j) Ii_jl (2.23)
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where ,nj is tile massof the jth link, Ij is tile monmnt of inertia conq)uted

with respect to the jth link center of mass and defined by the jth link local

frame, and the superscript j indicates that the physical quantity is defined by

the jth local frame. In Equation 2.23, N denotes the total number of links,

and payload could be treated as an additional fxed link attached to the robot

gripper. Let Tj be the coordinate transformation matrix transforming the jth

local frame back to the global frame, then

(2.24)

and by the orthogonal matrix property that TjT= T;', (_} is given by

+i =Tf ,a O (2.25)

In the above equations, the angular velocity is expressed in terms of rotational

G function. Similarly,/5 = TGjO could be introduced into the KE definition

in Equation 2.23 which becomes

where

KE

2 i=1

(2.26)

N

I* = E(rni TGf TGj + RG_TiljT _ nGj) E Tt '_×'_ (2.27)
j=l

Notice that I* is function of 0 only, i.e., I* = I'(0), besides that since KE > O,

I* is a positive definite matrix and I* = (I.)r. The kinetic energy part of

Equation 2.22, i.e.,

d (OKE. OKE)
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is further divided into a sum of mass and moment of inertia components, or

where

d OKE. OKE d (OKEm) OKEm d .OKEj OKE_
-gi(-N-2,) _ - _ oo, _ + _(--NT, ) - N,

1 N

KErn = __ m_0_ ra_ _aj0 (2.2s)
j=l

1 N

= _ E OT nGTTiIjTT nGjO
j=l

KEI (2.29)

.Derivation of _(o_I(Em)- o-_I(Em

Let ( TGj)i denote the ith column vector of TGi and (TGj), E T_ 3,

thcn a substitution of the KErn expression defined by Equation 2.29 into

(_I(Em) p,'od,_ces

N

OI(.Em__. _- E mj(T_j) T TGjO (2.30)
OOi 1_--1

thcn the time dcrivative of the above equation results in

d . OKE,,,

dt( _ ) = ,,,j ok _,ajo+ E ";( ",G,)_,' ,,C,/
j=, OOkOOi j=l

N

+ _ ,n._( TGj)T(o T THjO) (2.31)
2=1

0 2

where the second order partial (oo--_Pj) is the second order l)roperty of Pj

which is exactly the kth row and ith cohmm entry of THj given in Table 2.3.

Similar second order elements will show Ul) in ( 0 -_, Ii Era) which is

OO, - _ rnj Ok rajo (2.32)j=, OOiOOk

Since translational H function is symmetric, then

OOiOOk OOkOOi
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therefore, the second order terms in Equations 2.31 and 2.32 are canceled in

tile final dynamic expression of I(E,,_ which is given below

N

d (OKE_. OIfE., _ E[mj ( TGj) T TGj_ + ,nj( :rerj)T(_ T THjO)] (2.33)
dt "-'_i ) OOi j=l

.Derivation of _( o-P_IC E,) - o'_ K EI

Set ( RGj)i be the ith column vector of RGj and ( nGj)i E _3, then

from Equation 2.29,

d (OI(Et) N N nGj), TsljT j ,iG,{t
"dr OOi = _-'( noj)TTiIjTT RG)O + __,( T" T

j=l j=l

N N

+ E( nGj)TTjIjT[ ,_a,_ + E( nGj)TTjliTJ" ,_GjO
j=l j=l

N

+ E( RGJ)_'TjIjT? (_T RHj_) (2.34/
j----1

It will be shown that the third term in the righVhand side of the above

equation is actually zero. According to Equation 2.7, the transformation

matrix Tj is composed of the loom unit vectors

Tj = [:b_)s-_sl

Since the unit vcctors {,_j,yj, _,j} change orientation due to the angular mo-

tion of link j, 7"j is given by

¢5= [(,i,, x _j) (,i,j x _j) (,i,_× _j)]

Also by the G function definition,

'_j = nGj$

then the (5bT RGi_ ) part in the third term of Equation 2.34 could be expanded

into

('ib x _j)T'i'S ('ib X_'_)'i'S
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Following the vector product identities, (a x b). c = (c x a). b and _I,j x ,I,j = 0,

Equation 2.35 results in a null vector, so the third term in Equation 2.34

vanishes. Further reduction of Equation 2.34 is possible after introducing the

following expansions. First (_Te KE,) is expanded into two terms

OKE,ooi _ y'_ oTN( O_ uGT) TjljTT nGjO
j=l

+ _ o_ _v_ 1_Tf _CjO (2.36)
\ oe,]j=l

In the second term of the above equation, it can be concluded from robot

kinematic relation that

OTj _ [ 0 Oi is prismatic or revolute but i > j

08i _, [(Six ,+j)(Si x _j)(S_ x _j)] 8i revolute and i _< j

So the following analysis concentrates on the case where 8i is revolute and

i < j. Since(ZjT]",_ajO)e re_,lct

[c,]Ijrl" .a,0 = c_
C3

E 7_3

_l).ell

OTj • _'l" = (_ x sj)_, + (_ x Oj)c,+ (_, x _,)c_

( it,i)
= S, x (TjIjT r RGjO) (2.37)

therefore the second term of

N

Z
j=l

N

=Z
j=l

N

=Z;
j=l

Equation 2.36 could be expressed as

k-a-g,] .r;T,.c.,O

_ . [_, × (T,I,Tf Rag)]

-_,. [4,;× (TA,T[ ,ash)] (2.38)
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It is now shown that the above equation has a negative counterpart and is

neutralized in the final expression of

Subtracting the first term of Equation 2.36 from the first term of Equa-

tion 2.34 produces

N N( )Z( _¢,)TT,r_TI_G_O-_ O_ o ,,eT TjiT I ,,G,o
i=l 1=I -_i

= O_kOOiOk _ Ok " (TiIiT TaG, O) (2.39)

where each second order partial term represents an entry of rotational H

function listed in Table 2.4. By Tables 2.4, it can be shown for revolute 8_

that

020i _ _ 6kSkxSi ifj>i>k

08_001 [ 0 otherwise

020i _ f Six6kSk ifj>_k>i

OOiOOk [ 0 otherwise

where

1 if 8_ is revolute6k = 0 if 0k is prismatic ; k 6 {1,2,...,j} (2.40)

For j >_ i, the second order terms in Equation 2.39 have the following compact

results

OOkOOi OÜiOO_
k=l k=l

[ o,¢, o,¢;1 [a,,;
[oo, oo, oo, oo, "" oo.oo, J - [o_oo, oo,oo,

= ([(6_$_x _,)(6_x$,)...(6,_,L_,×L)o...o]

--[0 "'" 0" (L_ i X (_i+lSi+l)(Si X (_i+2Si+2)"'" (_,_i X _jSj)0 "'" 01)_

- [(6,_,×L)(_s_xs;) (6i_;xL)o...o]o
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(2.41)

where according to Table 2.2 and Equation 2.40

_,j= [_,_, _: ... _,_jo... olo (2.42)

In Equation 2.41, the fact that Si x S, = 0 has been usc(t to ('omplct.e t.ho

formulation. Then Equation 2.39 becomes

N

_,(-_, x $j). (TjZjT]".C,/)
j=l

N

__,-S,. [_,_ x (T¢IsT f nGjt))]
j=l

(2.43)

which is exactly the counterpart of Equation 2.38, and both will cancel each

other in the final form. Notice that although the above derivations are mainly

for revolute 0, an(l j :> i, the cancellation is still valid for prismatic 0i or

rcvolutc 0i when j < i, beta, use both terms arc identically zero in these cases.

After eliminating all zero terms, the dynamic equation of IiEt part reduces

to

d (OI(Et_ OKEz
dt \ OOi ] OOi
N

E( .c,),_[¢_ × (T,ZJU ,,a_o)]
j=l

N

+ }--_( ,_Gj)7"[(T.iIjTT)( _Gjg + [?'t' ,,Hj[_)]
j=l

(2.44)

The final KE part dynanfic equations are the sum of Equations 2.33 and 2.44

which axe

dt \ Ot_i ] O_i
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N

= _., mj( ra)ri( TG.iO + oT THjO)
j=l

N

+ __,( nGj)ri['_j × (TjIjT T RGi0)]
j=l

N

+ __,( nGj)r[(TjIjTT)( RGj_ + 0r nHj0)]
j=l

(2.45)

2.4.2 Lagrange Dynamics of Potential Energy Part

It is assumed that gravity force is the only external force on the

system and the gravitational field is along the global Z direction. Then the

gravitational acceleration vector is defined by _ = [0 0 g]T E 7"_3 where g is

the acceleration constant of gravity. The gravitational potential energy of the

jth lil_ is given by

(PZ)j = mjPf O

then

and

N

PE = _ mjpT0 (2.46)
j=l

OPE N OP]" ^

oo, - F, J-N-2,g
j=l

N

(2.47)
j----I

With the above result and Equation 2.45, tile dynamic equation for tile ith

actuator is

vi = d-t \ OOi ] 08i + 00--"_.

N

-- EmJ( TG)T( TGjO-I- oT THjO)
j---1
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N

j=l

N

+ __,( RGi)T[(TiIjTf)( RGj8 + a T RHjO)]
j=l

N

+ _ mi( TG_)To (2.48)
j=l

Lct v bc an n-dimensiona/ vector with v_ as the ith element, and recalling

that ( TGj)i and (RGj) i are the ith column of TG 1 and aG i respectively,

then for an n-link robot the total inertia/dynamic equations are

" = -_ \ oo ] oo + o--_
N N

= I'8 + __,,nj TAT(@ T THj@) + E aGT[_i × (TiIiTf aVj_)]
1=1 j=l

N N

+ _ nGT[(TiliTT)(O T RHiS)] + _ mj( TGj)To (2.49)
j=l 1=1

whcrc I* is the gcneralizcd incrtial matrix defined by Equation 2.27.

2.5 The Analogous Newton-Euler Dynamics

The dynamic equations derived by the Lagrange method will be

rcconstructcd by the analogous Ncwton-Euler approach in this scction. The

Newton-Euler method will verify the Lagrange results and also provide the

dynamic equations with a physical interpretation. The linear momentum of

the jth link is mj/_, then the associated incrtii force is

Fj = d-t

= rnjjgj

= mj( TG18 + 8T THiS ) 6 n 3 (2.50)

where /5i is replaced by the G and H function expressions defined in Equa-

tion 2.13. To support this inertial force, the ith joint needs to generate a
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generalizedactuator force (v_)Fj whose magnitude is given in the following

three cases:

Case 1. If i > j, then the ith joint is located downstream of the jth link, so

the inertial force creates no effect on (V_)F_, therefore, (vi)15 = 0. However,

from Table 2.1, ( TGj)i = 0 at i > j, hence (Vi)F, could bc expressed as

(v,)F,= m_(_,G,)T(TGj_+ Or rhea)

Case 2. The ith joint is prismatic and i < j, then (Vi)F, is a force given by
^

the projection of Fj on the ith joint axis Si, or

(_,)_, = _TF_

= mj( TG_)T(7"G,_+#r rHjO)

where ( TGj)_ -- ,_ is listed in Table 2.1 under the condition that i < j.

Case 3. The ith joint is revolute and i < j, then (v_)Fi is a torque created

by

(V,)F, = S," ("ij x Fj)

= (_, x ,.,j)7"E,

= mi( TGi)T( TGjO + oT THjO) (2.51)

where r_j is the positional vector between the ith joint and the center of mass

of the jth link. The vector triple product identity a. (b x c) = (a x b) • c

is applied in the above equation. For any of the three possible cases, (v_)f,

could be expressed by the unique form in Equation 2.51.

Let hj be the angular momentum of the jth link evaluated around

the center of mass, where h_ E T_3 and is defined in the jth local frame, then

h i "J= IjCj

=IjT T ,ajo (2.52)
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(vl)r_ could be written as

which could be converted into a global frame description hj by

hi = T,h 

= TIIIT T RGj@ ¢'2.53)

Set rj be the inertial torque associated with hj and rj 6 _3, then

d hi
rj = d"-t

= d(TjIiTT nGjO)

+ TiIiTf( aajg + OT ailed) (2.54)

According to Equation 2.35 results, Tf aGjO = O, so its accompanied term

in Equation 2.54 vanishes. Also,

TjIjT T nG_O = 4 i x (TjIjZT RGjO) (2.55)

then Equation 2.54 becomes

rj = 4 i x (Z.IiT T RGjO)

+ TjljTT( aajo + #T agjo) (2.56)

Let (vi).j be the generalized actuating force at the ith joint to support r3,

then its value is decided in the following two cases:

Case 1. If the ith joint is prismatic or revolute but i > j, then rj has ,lo

effect on (Vi)r,, so (vi)r_ = 0. Since by Table 2.2, ( nGj)i = 0 in this case,
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Case 2. The ith joint is revolute and i < j, then (vi)_

rj on the ith joint axis ,_i, or

is the projection of

(_)i)r 3

(2.s7)

where the fact that ( RGj)i -- Si is used in the above equation. Since in both

cases, (vi)_ has the same expression as in Equation 2.57, so the rj given in

Equation 2.56 is substituted into Equation 2.57 to produce the final form

Vi)rj

+ (RGj)T[(TjIjTT)(aCsO+ orRHflg)] (2.58)

Finally, for the gravity force, let (vi)g, denote the ith joint force

supporting the gravity force of the jth link, then

Case 1. If j < i and i is either revolute or prismatic joint, then

(vi)g, = O.,-.jO

= mj( _,c,)_O

Case 2. If j > i and the ith joint is prismatic, then

(_)i)gi

Case 3. If j >_ i and the ith joint is revolute, then

vi )9j = mS_T(",j x O)

= ms( TGi)ri9 (2.50)
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All three conditions result in the similar form as Equation 2.59. L,_t vi be

the sum of (v,)r,, (vi),._, and (v,)g, for all j 6 {1,2,3,...,N}, then from

Equations 2.51, 2.58, and 2.59,

N

., = E[(.,)¢, + (v,),,+ (',)9,1
j=l

N

= _mi( TGj)T( TGjO + 0 T THj0)
j=l

N

+ _--_( nGi)T[_j x (TjIjT T RGja) + (TjIiTT)( RGjO + a T Rgia)]
j=l

N

+  V )rO (2.6Ol
j=l

which is exactly the stune result derived by the Lagrange cquation in Equa-

tion 2.48. Notice that in both results, a and 0 are decoupled from position

dependent parm-neters in the dynamic equations. A physical interpretation

of Equation 2.60 is given here. In the first term of Equation 2.60,

m_( TGiO + aT THiO )

represents the inertial force on the jth link, where

( TGjO + a r THjO)

denotes link translational acceleration, and ( TGj)_ is the projection vector

projecting the inertial force on the ith joint. Similarly, in the second term

_j × (T._IjTjT RGjO) + (TjIjTT)( nG.iO + a T RH.iO )

is the inertial torque on the jth link due to angular acceleration of the link,

i.e,,

(TJjTT)( ,GjO + a T ,gja)
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and also due to the change of moment of inertia magnitudes in the global

franm, which is

_ × (T3IjT[ Rat@)

and ( aQj)_ is the projection vector projecting the inertialtorque to the {th

joint. A similar interpretation could also be given to the gravity force term.

Although the geometric location order between the ith joint and the jth

link and the joint type will affect the final projected value, such problems are

solved automatically by the contents of projection vectors ( ItGj)_ and ( TGj)_

as shown in the previous case discussions. Therefore, the above dynamic

equations are generM for any i and j due to compactness of G and H functions.

2.6 Summary

In this chapter, rigid robot dynamic equations are dcrivcd by both

Lagrange and Newton-Euler methods. The purpose of presenting rigid system

dynamic equations is to help the reader to get acquainted with the notation

and tools used iu this report. One of the most useful tools, the coordinat¢_

transformation matrix, is introduced first to ,_ssist th,_ identification of local

coordinate frame. Then, the first and second order influence coefficients, G

and H functions, are defined. Simple kinematic relations arc used in con-

structing and interpreting the entries of both functions. Finally G and II

flmctions are applied to system dynamics dcriwttion. One advantage of intro-

ducing the G and H functions is the compactness of these notations. Besides

that the G and H functions carry the kinematic relations required to define

robot motion and actuator driving force. The physical interpretations of the

final dynamic equations are given in the last section. Finally, it should be

pointed out that the G functions also produce the "partial velocities" and
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"pro'tiM angular w,locities" defined by [I'_ane n.nd Levi,lson, 1985], wllich cml

be proved directly l)y using the d'Alcnll)ert's principle and the principle _f

virtual work.



Chapter 3

Dynamic Equations of Compliant Robotic

Manipulators

In the previous chapter, we developed system dynamics for rigid

robotic memipulators. Physically, no system is absolutely rigid trader load.

The assumption of rigid body is to simplify system model so that an effi-

cient dynamic description could be obtained with acceptable level of accu-

racy. One of such occasions that a rigid body model becomes a practical

approach is when the system has negligible deformation. For example, the

rigid body model is suitable to most current industrial robots which are built

with rugged arms but carry small payload and operate in low speed. How-

ever, the rigid body assumption is not realistic when structural deformation

becomes prominent and consequently affects operation precision. An obvious

case where rigid body assumption becomes impractical is in the modeling of

a lightweight robot. To increase productivity and economic vMue, the next

generation robots tend to be lighter, faster, and have better precision while

carrying larger payloads. Due to the lightweight nature, a heavy payload

plus high speed will cause structural deformation and vibration. To maintain

precision, it is essential to have a compliant model to help system and control

designers solve the structural deformation and residual oscillation problems.

The aim of this chapter is to present system dynamics of robotic manipulator

modeled with structural compliance.

47
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3.1 Distributed Parameter Model of Compliant Ma-

nipulators

There are two popular methods of describing manipulator compli-

ance. The first method is the distributed parameter model, and the second

method is the lumped parameter model. This section will introduce the dis-

tributed model and save tile second meth()d for a lat, er sect.ion. Although the

distributed model is used mainly on link compliance, for the completeness

of the derivation, joint compliance is also included in the following analysis

where lumped massless spring is employed to represent joint compliance as

suggested by [Good, Sweet, and Strobel, 1984]. The distributed parameter

approach defines each robotic link as a continuous beam. Link deformation

is analyzed at every point along the link. Then an integration of all points

in the link gives the gross vibratory motion. A detailed derivation of compli-

ant mtmipulator dynamics by the distributed model is rcl)orted by [Graves,

1988]. This report will present a simplified version of compliant mm:ipulator

dynamics based on the following assuml)tions. It is assumed that (1) each

compliant link has a large slenderness ratio so that the Euler-Bcrnoulli theory

is applicable, (2) small deflections, and (3) deflections are decoupled in all di-

rections. According to the first assumption, the rotatory inertia and shearing

effects are negligible. And by the third assumption, coupling effects like the

centrifugal stiffening is neglected in the analysis. The link deflections mod-

eled in this section include lateral bendings in principal planes, longitudinal

elongation, and twisting along axial direction. Also, each joint compliance is

modeled by a lumped spring. The Lagrange method will be applied to de-

rive the compliant system dynamics. As a representative analysis, the kinetic

and potential energy are derived for the compliant link j shown in Figure

3.1. In this example, a given point p deflects from its rigid link position to
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Figure 3.1" Distributed Model of aCompliant link
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Figure 3.2: Side View of a Compliant Link
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a deformed position p'. {xj,yj,zj} is the fixed local frame before deforma-

tion, and {x}, y_, zj.} is another local frame attached to the distal end of tile

deformed link. Both frames are parallel when the link is absolutely rigid.

Figure 3.2 shows the xj - zj plane view of Figure 3.1. According to the third

assumption, Figure 3.2 represents the link bending along z i direction. In the

same figure, N - N is the neutral surfi_ce, and p is a point on tile neutral axis

located at a distance 7"from the fixed local frame. Let _ denote the deflection

vector from p to p', and {.T,j,1)j,_.j} be the unit _3 vectors of {xj,yj,zj}, all

unit vectors are defined in the global frame, then _ is composed by

t) = t) j + t)fjj + t) j c n 3 (3.1)

which indicates that 5 is a function of position and time. In tile above equa-

tion, {5,,6v,5= } are the deflections of p along {._j,_j,._j}, where 5u and 6z

represent the lateral bendings and 5, is longitudinal elongation. Now, let

a,(r, t) be the twisting angle of the cross section at point p along :_j. Then

the linear and angular velocities of point p' are derived in the followings. Let

Oj be the global position vector of the jth fl'ame, and P and P' be the global

position vector of p and p' separately, then

P' = Oj + r_j + 5 (7_T_ 3 (3.2)

and

= +÷ij

= P+$ (3.3)

Note that if the jth joint is revolute then ÷ = 0, if the jth joint is prismatic

then ÷ = /_._+ flj0, where 6j is the actual joint displacement, and flj0 is the

joint deflection. Let wj and ¢_ be the angular velocity of point p' and p
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respectively.

h_ the form

Since the rotatory effect is ignored, the angular velocity of p'

_j(,,,t) = % + _(,',O._j e r_:' (3.4)

° ^

Notice that tile joint compliance effect is included in _)j, i.e, a 13joZj term is

contained in _)i if the jth join_ is rcvolu_e. For the incremental segment sur-

rounding p' in Figure 3.2, let din(r) be the mass of the segment and dI(r) be

the associated mass moment of inertia with dI(r) __ 7_3×3, then the kinematic

energy of the segment is

2dI(Ej = P'Tp'dm(v) + wfTj(dI(r))Tf wj (3.5)

The above derivation is general for any given point p at 0 __<r < L, so an

integration of all such segments over the whole link length L gives the kinetic

energy of compliaait link j, which is

+ f CTTj(dI)TT(&:Ycj) + S(&.:_j)rTj(dI)T]"(d.=ej) (3.6)

where the part

i bT/>d'_+ i ¢]:T,.(dS)T]'¢;

is the rigid link kinetic energy. According t;,O the fit's_ and third ilsstlllll)tions,

it is shown by [Low, 1987] that the gravitational and ('lastic potential energy

are given by

PEj 0%)2d," + f )_drf P'T_dm + 2 f E[_(-_r -_

..+:/' +p;.,,,o(3.7)
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where E and G are separately tile moduli of elasticity and rigidity, A is tim

cross section area, I v and I, are the area moments of inertia about #j and i/

respectively, dx is the polar moment of inertia along 2j, A'j0 is the stiffness of

modeled joint spring, and O E R a is the gravitational acceleration vector. In

Equation 3.7, the rotational angles av and a, are given by

06_ 06_

au = - &--Z-; a, - Or (3.8)

which rcprcscnt the rotation angles around _)j and _?j respectively. Thc grav-

itational term in Equation 3.7 could bc further dividcd into

f P'T Od, n = f pT odm + f 6T odm

where the first term is the gravitational potential energy of rigid link. To

include rotatory inertia effect into the kinetic energy expression, Equation 3.4

is modified by

wj =: 'I_2+ dj:2j + du0 j -]- &,,_j E R a (3.9)

then the wj in Equations 3.5 and 3.6 are replaced by the above new defini-

tion. In order to simplify flexibility dynanfics of a continuous system, a finite

number of assumed modes are generally employed to discretize the deflections

which actually contain infinite degrees of freedom. Therefore, it is assumed

that the deflections could be expressed by decoupled forms

rlab"

=
i=l

Try

i=l

i=1

?_Ot

a. = . (3.1o)
i=1
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where {¢j,i, ¢ju,, Cjzi, ¢j_i} are the ith mode shapes of {5,;, _y, 6_, o_x}mad are

functions of r, and {flj_i, flj,,,, flj,i, flj_i} are thc associatcd amplitudes which

are time functions. Then kinetic and potential energy expressions in Equa-

tions 3.6 mad 3.7 could be integrated for all modes shapc, and system dynam-

ics are defined by a set of generalized coordinates composed by nominal joint

pa.rameters and modal amplitudes. Several oftcn used mode shapes are sug-

gested by [Meirovitch, 1980] for the general continuous beam. For example,

polynomial mode slml)es with orthogonM nature are used by [Graves, 1988].

Of course, selection of mode shape needs to mcet geometric boundary condi-

tions. Since a compliant link is gencrMly modeled as a fixed-free or pinned-free

beam, sclccted mode shapes must satisfy both boundary constraints. Usually

simple mode shapes arc employed to facilitate integration. Once the mode

shapes are defined, the nmdal mnplitudcs could be reconstructed from on-line

measurements as reportcd by [Hastings and Book, 1986].

For an n0-1ink robot, the total system kinetic and potential energy

arc

N

KE = E KEj
j=l

N

PE = ___PE.i (3.111
j,=l

Here, payload is treated as a fixed link, and N is the total number of links

including payload. By collecting all state variables into a vector q and defining

that

q = [0r¢T]_.

0 = [0, ...0,,] r (3.12)

... Z,, ... Z_,,_Z,_, ... Z,_,, ...it
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where 0 is the vector of all nominal joint variables, and fl is the collection of

all joint and link vibratory amplitudes. Th(.n the l,a.grmle;c cquat.ion giw's

d cglfE OKE OPE_{ vi qiCO-_(_) o_, + o_, . o ,z,e/_ (3.13)

where qi is the ith clement of the vector q defined in Equation 3.12, a.nd

u, is the generalized actuator force at the ith joint. In the above dynanfic

equations, it is assumed that no external force is applied on the system.

Now, some remarks regarding the above d('rivation arc given here. h: Figure

3.1, the (j + 1)th link is commcted to the end of the deformed jth link, so

coordinate transformation of the (j + 1 )th frame should be with respect to the

distal end fl'ame {a'j, ^' z'^' yj,,.j} instead of to the rigid link frame. Since change

^l 21of {25,y,,..j} orientations are due to link twistings a'.,ay, c_= at r = L, so

^1 ^!

T,' - [*'5_, :,1 = {'g',,OJ,_,ill'5(L)

--glI,[i(L) (3.14)

wh,'re II5.(L ) is a 3 x 3 transfl,rmati,,n matrix needed t,_ be defined. To find

II_(L), the rotational matrices of %., a_, a'_ at r = L are dmiw,d first. For

snmll dcfornmtions, it can bc shown that

I/or(2, c._)
l 0

= 0 cos a_.(L)

0 sin a,(L)

1 0 0
= 0 1 0 +

0 0 1

o Ii,-sina,,(L) _ 0

cosa.(L) 0

0 0 0 ]

o 0 -_.(r.) J0 a,.(L) 0

ooji -,,,_:(L)
a_,(L) 1

(3.15)

I_ot,(,),_) : [ cos? /
- sin %(L)

'_2_ :/" + Au

1 0 _ 0

0 cos %(L) --c_y(L)
001 t,,_(L)o1 ]

(3.1G)
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Rot(S,_ )
cos a',(L )

= sin _(L)
0

- sin a_(L)

cosa_(L)

0

0

0 ,_

1

where 2" is a 3 x 3 identity matrix.

multiplication of the above rotational matrices produces

1 -oez(L)

_,(L) I
0 0

0

0

1

(3.17)

By neglecting tile high order terms, a

(z + zx.)(z + zx_)(z + &). z + t,, + _x_+ az (3.18)

Since tile order of multiplication does not affect the above result, W i is given

by

1 -.,(L) _(L) ]

Wi(L ) = Z + A_ + A_ + Az = _,(L) 1 -_(L) ] (3.19)-%(L) a.(L) 1

A substitution of the above W i into Equation 3.14 finishes the derivation of Tj'.

Notice that the orthogonality property of the transformation matrix holds for

T_, i.e., (T;) -t = T; T. After establishing local frame for each compliant link,

the position vector of each local frame vertex could be generated recursively.

The procedure of finding the local frame position of a compliant link is similar

to that of rigid link except that the distal end-point deflections are added

to each rigid link length. The jth link origin 0 i in Equation 3.2 could be

computed by this procedure. Another comment is that the G and H function

definitions are also applicable to compliant system dynamics. For example,

in Figure 3.1, the velocities and accelerations of p' could be expressed by

OP' OP'

i" = [Oq, Oq2

= rC¢_

_51 =

wi =

doj =

"lq

rGp, q + aT THp,q

RG,,,_

]RGp,q"+ 0T RHp, 0 (3.20)
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where link deflections and twistings and joint deformations are considered in

forming tile G and H functions. With these compact notations, the kinetic

energy formulation in Equation 3.6 could be expressed by

2KEs = i P'Tp'dm + i (<"2T'(<si)r%)
= nGv,mj(dI)m j nap,)(t (3.21)

and the total kinetic energy is

N

2KE = Or ( rGp r, Tar,din + aGp,Ti(dI)T s aGv,)il

a/_=f (iri.q (3.22)

where I ° is the generalized inertia matrix which is generally symmetric and

positive definite. Another importallt result of assumed mode method is that

resilient energy could be defined by COllStallt stiffness mltt, rices. For example,

in Equation 3.7, the resilient energy of o,_ is given by

1 0- y
i EI._(--O_) d," (3,23)

since the assunied niode expression of 5_ in Equa, tion 3.10 could lie written

llz

_= = X;_%(t)¢,.(,.)
i=1

= fl}1:(t)¢j_ (,.) (3.24)

as

with flh_ and Cj, defined by

s_,(t) = [Z_.,(t) .../J,,,:(_)lr e _"'

¢,(,-) = [¢.,(_) ... ¢,...(,.)]r e n-:

then the a v in Equation 3.8 has an inner product form of

T,0¢J:
% = -_.t--g-,

(3.2.5)

(3.26)
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A substitution of the above % into resilient energy expression ill Equa-

tion 3.23produces

ill which

1 T ]_.r [ _¢jz
--, or2

1 T -,-
(3.27)

I(jz [ EI ( 0_¢j" 02¢J"_Td T_ "'×n"
=l v 0r 2 )( 0,.2 , _rE (3.28)

is a constant stiffness matrix after intcgration. Similarly, the other resilicnt

energy in Equation 3.7 could be defined by

1 0_
2lEA(- d,.

1 T

1 T .

1 7'
= -_,_Ifj_,flj_, (3.29)

In the above equations, the vibratory amplitude vector and stiffness matrix

dimensions are defined accordingly by the numbcr of used assumed modes.

With these constant stiffness matrices, it is possible to express the total po-

tential energy in Equation 3.11 by

where

K = diag[K,o K,_ IQv I(1, K,_ K20 I(2, ...] (3.31)

and vector fl is defined in Equation 3.12. Let n_ denote the total number of

assumed modes, and no be the number of nominal joints, then from Equa-

tion 3.12, the dimensions of vectors 8 and fl are given which are 6 E _,,0 and

fle _"_. By the kinetic energy expression in Equation 3.22 and the potential

!! -
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energy formula,tion in Equation 3.30, the system dynamics could be defined

by

-_( _ Oq + Oq

=[o1 (3.32)

where v E _,,0 is tile vector of generalized actuator forces, and f_ and f2 are

the coupling force terms defined by

= I'il) + [ (f P'T3d,')] (3.33)

both .f_ and J;2 are nonlinear functions of 0, t), fl, and D, and their dimensions

are: .f_ c: _,_o and f2 or_"R."__. For a simple system, a symbolic program like

MACSYMA is generally suggested to pcrfl_rm amdytical integrations of the

_tl)ox'e kinetic and potcntild energy CXl)ressi(ms.

3.2 Lumped Parameter Model of Compliant Manipu-

lators

Theoretically link deflections are (,Onll)_sed c_f infinite modes, but
t

resilient energy actually concentrates in few pritm_ry m_d_'s. Also, duc to the

damping effect and the demand of largo energy t_ lwnd a link into high ord,v

mode shapes, high frequency modes are seldom cx('ited in regular operation.

Based on these facts, usually only 1)vimary modes ave c_msidored ill the stu(ly

of continuous link vibration. Furthermore, as the rigidity of a compliant

link increases, the link deflection reduces and the number of dominant modes

decreases. Therefore for small deflection, a simple but efficient method of

studying link deformation is to focus on the largest contributor: the first

mode. This first mode approximation method is called the lumped parameter
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model. In the rigid body model, system inertia is modeled by a point mass.

Tl,e same approach is extended to the lumped parameter model except that

lumped springs are added to tile compliant system to simulate structural

deformation. These springs axe imaginary and occupy no physical space or

weight. They axe defined by their locations, motion nature (translational or

torsional), and stillness values. In the hmalmd parameter model, each spring

represents one degree of freedom, and a generalized coordinate is assigned to

each vibratory displacement. It should be noticed that to preserve physical

reality, the lumped spring stiffnesses are generally obtained experimentally

such as reported by [Behi, 1985] and [Sklax, 1988].

Figure 3.3 sketches the hunped spring model of a compliant link.

In that figure, tile jth link is connected to its preceding link by a compliant

revohtte joint which is modeled by a torsional spring with vibratory amplitude

13j0. In case that the jth joint is prismatic then joint compliance is replaced

by a translational spring. Tile jth link is assumed rigid and the actual link

COml_lia.nces a.rc undertaken by three tra.nslational and three torsional springs

attached to the distal end of the link. The six springs are assumed decoupled.

The translational springs duplicate the end-lmint deflection of the link along

each local coordinate direction whose amplitudes axe given by {/3jr,/3j2,/3i3}.

The torsional springs produce the distal-end twistings of the link in three

orthogonal directions which are defined by {/3i4 , Bin, &s}. Therefore in the

lumped parameter model, each link deformations could be defined by seven

vibratory coordinates which are

and plus the actual joint displacement there are eight degrees of freedom

to each compliant link. Hence, an n0-1ink compliant manipulator could be
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Oj _Yj

jth link

(j-1)thlink

I
zj

13j3

--" 13jI

Figure 3.3: Lumped Parameter Model of a Compliant Link
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modeled by 8no degrees of freedom in the lumped parameter model.

In the lumped parameter method, tile modeled springs are assumed

decoupled, hence tile pseudo-joint concept could be introduced to define the

vibratory motion. In the pseudo-joint technique, a modeled spring is treated

like an actuator of an imaginary joint, and the resultant deflection is dupli-

cated by the movement of that imaginary joint. For example, a translational

deflection is replaced by a pseudo prismatic joint, and a torsional deformation

is modeled by a pseudo revolute joint. These pseudo joints are driven by the

force or torque stored in the deformed springs. After replacing all springs

by pseudo joints, a compliant manipulator kinematically behaves like a rigid

manipulator, and the rigid model dynamics derived before could be extended

directly to the hnnped parameter system.

As a demonstration, the lumped parameter model of the three-link

artn shown in Figure 2.3 is given below. Figure 3.4 shows a breakdown of the

three-link arm. Deformation of each link is approximated by the fundamental

mode in each direction. For exmnple, the first link motion is defined by the

nominal joint displacement 02, joint deflection f_t, three linear dettections

{fl2, [_3, f14} at the (list,-fl end, and three end-point twistings {fls, f16, fir}. The

vibratory directions of the above amplitudes are indicated in the figure. Ill

this example case, there are eight degrees of fl'ecdom in each link, hence totally

twenty-four generalized coordinates are used to define the arm motion. In

order to describe the arm motion, the transformation matrices are computed

first to define the local coordinate frames of the three-link arm, which are

T, = S,]

Cos(Ol + fit) -- sin(Ol + ill) 0 ]
= sin(01 + cos(01 + 0 l0 0 1
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i

/
/

/

Figure 3.4: Lumped Parameter Model of aThree-Link Arm
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T2

T3

1

= T, _,
-/36

1

= T2 ill4

--ill3

-fit
1

-fl14

1

ill2

cos(03 + ills)
sin(03 + ills)

0

&
-f15

1

cos 90 0 sin 90

0 1 0

-sin90 0 cos 90

ill3 1 0

-ilL_ 0 cos 90

1 0 sin 90

- sin(0a + ills) 0

cos(03 + ills) 0
0 1

0

- sin 90

cos 90

(3.34)

where small twisting angle assumption and Equation 3.19 results are applied

in the above equations. As an example, the linear and angular velocities

of the point p ill Figure 3.4 are derived in terms of the G functions. The

positional vector of p is given by

P = Pl2 + P23 + P3p _ _3 (3.35)

where P12 is the positional vector from the origin of the first frame to that of

the second frame, similar definition is uscd ou P23, and P3p is the positional

vector of p with respect to the third frame. All vectors are defined in the

fixed global frame {Xo, Yo, Zo}. Details of the above positional vectors are

shown in the following equations:

PL2 = ll._ + _1 + _301 + il4_1

P3p -- I303 A/-fl16_ 3 "Jr-fl1703 "4-fl18_'3 (3.36)

By the pseudo-joint technique, the arm is defined by the generalized coordi-

nates

q = [010503fll fl_ "" f12,]T ¢ "1¢24



64

Now, each link of the arm is assumed rigid and is connected by decoupled

actual and pseudo joints. This model allows us to define point p velocities by

using G functions, which are

P = TGp(t

(3.37)

where _ is angular velocity of p, and the 3 x 24 matrices, TGp and nGp, are

the translational and rotational G functions respectively whose elements are

given as follows

Op Op Op ] (3.38)_,ap= [-N-i_ "OZ.--Z,

with

oI' ^ oP op _ : . p Ol' =zl xP
o--0-=zlxP -_2 _-_a^ 3v oq_ P2:_Ol_ °o°_ ^ aP _ z --_c_ x
o,_w- x, o_ = u, N - _' oq_ ^
oj:' p_:, = S, x P2a _ - .2 _g_.;9_. = _]L X -- a l -- _" -- x2

al, - '_g], _.: of _ : .. 19 -- ^ Pap

y_;o h x P_,, %' ^ r_, o,, -
4_'; _ o o - o

,9/h s -- Z3 3fl,o 3flmo Otis,

(3.30)

and

j_Gp = [_, ()Sa z', 0 0 02, ,j, :?,0 0 0 0:i"2 ,j., _, i:, 0 0 02a _:, Y.3] (3.4(1)

The abovc results ave crcated by a direct application of the G flmction (h'fi-

nitions listed in Tables 2.1 and 2.2. Sinfilarly, accelerations of p are

j5 = ,rGv_ + qT THv/t

iI, = nGpii + ilT nHpO (3.41)

where THv and i_Hv (5 "]'_3×24×24 are the associated H flmctions. The above tt

functions could be derived immediately from Tables 2.3 and 2.4. However, due

to the prohibitively large dimension, they are not shown in this report. The
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above results are applicable to any point in the ann, so tile lumped parameter

model possesses the efficient nature of rigid body model. Therefore for an n0-

link compliant manipulator modeled by the lumped parmnctcr technique, the

system kinetic energy is

N

1 _](rniqT TG T TGiO + (_T RGTTiIjTT RGjO )
KE = -2 i=l

where

aa _T I.=

N

T T ,'f_S.o × 8noI*(O, fl) = _(,n ira r TGj + nGj TjljTi nGj) E
j=l

(3.42)

(3.43)

all nominal joint variables, and fl E R"' contains all pseudo joint displace-

ments with n_ = 7n0. Also, mj is ln_s of the jth link, Ij is the associated

moment of inertia, and N is the total numl)er of links including p;tyload.

Following the above notations, the system potential energy is

PE = __, ,,bPf._ + flTI(fl (3.44)
j=!

where K is a diagonal stiffness matrix whose diagonal values correspond to

the modeled spring stiffnesses. The Lagrange equation is used directly to

formulate the system dynanfics which are

d OKE OKE OPE__ v_ q_EO (3.45)
_( _ ) Oqi + Oqi I, 0 qi E fl

Then by using the approach introduced in Chapter 2 aald the lumped parame-

ter model approximation, the dynamic equations of a compliant manipulator

vector composed by two parts: q = [0T, fiT]T, where 0 E R TM is the vector of

is the generalized inertia matrix which still mainta,ins the symmetric and pos-

itive definite character. In the above equations, q is a generalized coordinate
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are given by

d fOKE_ OKE OPE
-_ \-SU / aq + 0--4-

N N

= I*_ + Errb :rGT(q T TH/I)+ E RG_'[_)j x (TjI.iT f riG�l)]
j=l j=l

, [o]+ _., uG_'[(TsIjTT)(o r utt.igl) ] + y] ,nj TG_]O + Kfl
j=l 3=1

l [o1-- A + K_

= 0 E/_.,,o+_ (3.40)

where f_ E "PvTM and f2 E T¢"_ contain the smnmation terms in the above

equations, and both are nonlinear functions of O, t},/3, and/3. In the above

equation, v is an no vector of generalized actuator forces.

3.3 Compliant Manipulator Dynamics Including Actu-

ator Parameters

In both distributed and lunq)ed 1)aramet('r models, the compli_mt

manipulator dynanfics have the common symbolic form of

["l [0] [,,]I*ij + .[,2 + K/_ = 0 (3.47)

where q is the vector of generalized coordinates composed of nominal joint,

displacements 0 and vibratory deflecticms fl, I ° rq)resents system generalizc(l

inertia and is at flmction of 0 and fl, J'[ and f'2 c(:)ntain th(,' nonlinear Coriolis,

centrifugal, and gravitatiomd forces, li'fl is the vector of spring forces, and t, is

the vector of gcneralized actuator forces. To complete the system dynamics,

actuator dynamics is added to the above dynamic equations in this section.

First, since 0 E T¢TM, /3 E 7¢"0 and I* = I *r, I* could be divided into following
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submatrices

where A_ E 7_ ''°×'°

becomes

P7 /J

where the first l}art, i.e.,

, E E "K''ax'°, and A2 E _,,_x,,o.

(3.48)

Then Equation 3.47

+ + f; = v (a.5o)

represents the dynamic balance between actuating forces and system re-

sponse, and the second part

_0 + h,_3 + A + I,'/3 = 0 (3.51)

shows the interaction betwccn nolninM and oscillatory motions through spring

forces. It is assumed that the compliant mmlipulator is driven by DC servo

motors, and the actuator dynamics of the jth joint DC motor are

NjJjOj + NjDjOj + NjSjOj + vj/N1 = I(,jij

where ij is the armature current, Lj is the circuit inductance,

circuit resistance, K_,j is the actuator voltage gain, u} is the voltage input,

Ji is the armature inertia, D_ is the actuator damping, Sj is the motor shaft

stiffness, K 0 is the actuator torque gain, vj is the external load, and Nj

is the gear reduction ratio. The subscript j indicates the parameter of the

jth joint actuator. These actuator parameters except vj are constant values.

Generally, the inductance Lj is negligible, so Equations 3.52 and 3.53 could

be combined into a second order form

N]lC,,jl(.,j) Oj N]SjO. i vj = ICtJNJu'. (3.54)N_. JjOj + N] Dj + -_j ') + + nj '

(3.52)

(3.53)

Rj is the

f; 0 v
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Then for an n0-1ink m,'mipulator, the actuator dynamics can be grouped into

J(J + D_} + ICe0 + v = K,,/ (3.55)

wherc

j = diag[(N?J,)(X,_J,_) N'_•.. ( ..J,,.)]
r2 " "

hl li,ali'tl ) 2• .. (N,,oD,, o +D = diag[(N_Dl + Rl

Kc = diag[(N_Sx)(N_S2) "" (-N_0S,,e) ]

,. r,K,1N1, l(.t2N_) Kt,_eN, eI<, = ,-_gt_---h-U_( n_ " ( n,,o )1

Rno

(3.56)

and J, D, K_, and Kt are n0 × no constant diagonal matrices. Also, u' is

the vector of input voltages with u_ as the jth element. By substituting

Equation 3.50 into Equation 3.55, the combined dynamic equations become

(A'_ + J)O + ET/3 + fl + D() + I(_0 = I(,u' (3.57)

the above equations have actuator voltages as the control inputs. By defining

A_ =A'_+J; f_ =J'_+DO+K,.O; u=h',u' (3.58)

the final system dynami(" equations are

A,_ _ + f_ + I(fl = 0 (3.59)

In the. later controller designs, control algorithm will lw built b_tsed on tD'

above symbolic dynamic equations which are general for distributed and

hunped partuneter models. The designed input u will be divided by ICt t_)

obtain the actual input voltage vector u'.
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3.4 Comparison Between Distributed and Lumped Pa-

rameter Models

In the previous sections, wc have presented the model and dynamic

equations for compliant manipulators by both distributed and lumped pa-

raaneter methods. By comparing the assumption and techniques used in both

approaches, each one possesses its unique characters that are not shared by

the other. Obviously, the advantage of distributed parameter model is its

precision. Since the distributed parameter model defines vibratory motion

based on tile dynamic balance of each differential segment along a compli-

ant link. Fidclity is the strong point of this method. The disadvantage

of the distril)uted parameter model is computational inefficiency. Although

the resilient energy of a continuous link is contained primarily in few basic

modes, and finite number of _ssumed modes are oftcn applied to simplify the

dimensions alld integrations of a given distributed model, thc final system

dimensions arc still bcyond the real-time computation capacity of gcncral

processors. Therefore, the distribute(l paramcter model is used mainly in

off-line design study.

By contrast, the hunped parameter technique models link deflec-

tions by the first mode approximation and neglects high order mode effects,

so exactness is not the focus of this method. But due to its smaller dimension,

the lumped parameter method is a candidate for real-time control model. Of

course, selection of a compliant manipulator modcl still relies on the nature of

a given compliant manipulator and conditions of application. Several factors

affecting selection of model are listed as follows: (1) dimension of compliant

link, (2) material of compliant link, (3) robot operation speed, (4) payload

size and external force, and (5) operation precision requirement. The first
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two fitctors define link rigidity, the third and fourth factors determine the

load supported by tile link, and the last factor decides tile degreeof accu-

racy neededin a compliant link model. For example, according to [Ussher

and Doetsch, 1983] and [Taylor, 1985], SpaceShuttle Remote Manipulator

System (RMS) has two tubular booms (links) of diaaneter 13.5 in and length

23 ff and 20.9 ft separately, and the booms arc made from gral)hite-epoxy

composites. Due to the lightweight nature, the stiffness of RMS at its fully

extended position is 7.5 lb/in, plus the maximum payload mass is 65,000 lb,

apparcntly high order mode cffccts are important in anMyzing link deforma-

tion. However, RMS operates in a zero-g environment, so the inertial load is

caused mainly by the motion of thc payload. Therefore, when RMS operates

in a low specd, the inertial load is very snmll in which case the first mode

dominates link deflection, then the lumped parameter model is considered an

efficient approach. Additionally, RMS is so light that its inertia is ahnost neg-

ligible in comparison with payload and Orbiter inertia. Hence, [Book, 1979]

and [Scllhorst, 1982] treat RMS as masslcss chain and model its compliances

by lumped springs. This example points out that selection of compliant ma-

nitmlator model is basically oriented by a given task. Thc tradeoff between

accuracy and computation effort should be decided by user based on the fi-

nal lmrpose of application. Currently, the distributed parameter model is

used in off-line design or on-line motion control of simple structures like one-

link arms, e.g., [Hasting and Book, 1986], and the. lumped parameters model

is used in on-line control study of high degree-of-freedom robotic manipula-

tors as reported by [Hernandez, 1989] and [Lin, Tosunoglu, and Tesar, 1990,

b].



Chapter 4

Dynamic Property Investigation of Compliant

Manipulators

In the last chapter, we derived compliant manipulator dynamic

equations by both distributed and lumped parameter models. Unlike rigid

body dynamics, compliant dynamics have additional n_ equations describing

thc vibratory system behavior. These additional cquations carry some prop-

erties that are distinct from rigid body dynamics. Four major aspects of thcse

propcrtics are investigated hcrc: reduction to rigid system dynamics, the sys-

tem nlttural frequency, accessibility of vibratory mode, and controllability of

vibratory modc.

4.1 Reduction to Rigid System Dynamics

The compliant m/mipulator systcm dynamics arc derived in Equa-

tion 3.59 which arc common for both distributcd and lumped parameter mod-

els. This section will study tile physical meaning of vibratory dynamics when

the structure becomes infinitely rigid. First the dynmnic equations in Equa-

tion 3.59 are repeated here, which are

[ A' 53"r _j f' u] ET_"'+"a (4.i)

where the upper part represents the dynamic equations of nominal joints,

and the lower part describes the vibratory mode dym'unics. When mmlipula-

71
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tor rigidity increasesand structural deflectionbecomesnegligible, the vil)ra-

tory amplitudes vanish fi'om the dynamic expressions,and the upper 1,art of

Equation 4.1 reducesto the rigid body dynmnic expression. Consequently,

the vibratory dynamics which occupy the lower part of Equation 4.1 take

on a different physical meaning. Recalling that in deriving the rigid body

dynmnics in the secondchapter, we have used the Newton-Euler approach to

show that the dynamic equation at each joint is actually the projection of all

inertial loads on that particular joint, and that the actuator force is the coun-

teracting force to the projected inertial load. Following that relation, the final

system dynmnic equations balance joint actuating forces to system inertial

load. However, in doing so, it is assumed that each link is of infinite strength

to support and transmit these forces, therefore, structural internal reaction

forces arc neglected because they are cancelled out in the final dynamic ex-

pressions. In a rigid link system, the spring force K/3 is exactly the internal

reaction force that is generally neglected in rigid body dynamics. This result

could be explained fi'om pseudo-joint point of view. In a lumped parameter

model, each link has six dccoupled pseudo joints located at the distM end:

three orthogonal prismatic joints and three orthogonal revolute joints. Then

the lower part of Equation 4.1 indicates that K_ is the force counteracting

inertial projection at each pseudo joint, or direction, hence when link rigidity

becomes infinitely large, K_ becomes the internal reaction force or torque at

the distal end of _ given link. Ther_'fl)re, in the rigid link cas,, K_4 rel)rcsent_

internal structural forces, and the lower part of Equation ,I.1 represents the'

action and reaction l)alance at each pseudo joint location and direction. It

should be noted that although internal forces usually do not show up in the

final system dynamics of a rigid body model, it is important to analyze these

forces for structural strength design.
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4.2 Structural Natural Frequency

Another important information observed in the vibratory dynamic

equations is the structural system natural frequencies. For a stationary ma-

nipulator, the actual joints are motionless, that is, _ = _J = 0. Then a sudden

blow on the maalipulator will cause structural oscillations. The oscillatory

dynamic equations are exactly the lower part of Equation 4.1 with _ = _ = 0,

that is,

A2_ +/_(8 = 0) + K_ = 0 (4.2)

The above equation is a simple second order system with As as the generalized

mass matrix, f2 as nonlinear damping force vector, and K as the spring

matrix. For small oscillations, f_ is negligible according to [Behi, 1985], then

Equation 4.2 is reduced to

+ h;'ICfl = 0 (4.3)

Let ]_ = Xfl, then X is tile eigenvalue of

(xz - I ')Z = 0 (4.4)

and fl is the associated eigenvector. In the above equation, 2" is an n a _<

n_ identity matrix. For a compliant manipulator modeled by n tj vibratory

modes, there are n_ natural frequencies given by the square root of X. For

each natural frequency, the associated eigenvector gives information on the

relative magnitudes of modeled modal amplitudes. These natural frequencies

and eigenvectors could assist users to identify system inertial and stiffness

parameters. For example, [Behi, 1985] has experimentally measured Cincin-

nati Milacron T3-776 robot oscillatory frequencies and vibratory modes and

then used modal analysis methods to determine the inertial and stiffness



74

values. Of course, since A2 is position dependent, the eigenvalues and eigen-

vectors change with manipulator position. Therefore, a least-square curve

fitting approach may be used to average the experimexltally obtained system

l) ara.meters.

Another usage of the vibratory dynamic equations is to decide the

quasi-static deflection of a compliant maslipulator. A stationary mmfipulator

is subjected to gravitational loads and hence deflection. Similarly, a work-

ing mmfipulator deforms under dynamic inertial loads. An approximation of

a.nalyzing the structural deformation of a moving robot is by quasi-static ap-

t)roach. In quasi-static analysis, robot is assmned stationary at every instance

of motion, then the static deflection caused by the inertial and gravitational

loads are computed for that position. This means that by neglecting the /_

and/3 terms in Equation 4.1, the quasi-static defection is given by

/_ = -I(-'(Et9 + f2) (4.5)

In t,h_ alcove cq_t_tion, it is assumed that all/_ terms in E and f_ are ncg, ligiblr,

th_rcforc, E = E(/9) and f_ = f_(O, 0). Since the quasi-static deflection is con-

sid_red to be the major contributor of structural deformation, it is suggested

by mmly researchers to compensate quasi-static deflection by eifller off-line

tn_jectory plmming or on-line control-in-the-small method as reported in the

first chapter. Detailed analysis of quasi-static deflection and global stiffness

matrix derivations are presented by [Fresonke, Hernandez, and Tesar, 1988],

and real-time computation of manipulator quasi-static deformation is studied

by [Hernandez, 1989].
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4.3 Accessibility of Vibratory Modes

Another dynamic property to be examined is the effect of kin¢'matics

on vibratory mode motion control. In the dynamic equations

A1 _T _ fa u

tile generalized inertial matrix associated with acceleration term is positive

definite therefore invertible. Then the inverse of the inertial matrix is defined

as

C A2 E A2 (4.7)

(A1- Y]TA21_') -1 --( AI - Y]TA21_') -1Y]TA21 1

-h21)] (h I - _TA21Y])-I A21 -3t- h21_[] (hi-)]Th_-ly])-I __TA2, J
where tile second equation gives the inverse identity in terms of the subma-

trices of the original inertial matrix. In the above equations, the dimensions

of each element are: At E T_ '_°×''e, IE E 'R ''_×''°, A2 E _'_a×'_, fl E 7_"0,

f.2 C R."_, K C _"_×"_, 0 C T_TM, and _ E T_"_. Also, A1 E _'_×"_,

C E R, ''_×'_*, and A2 E T¢""x'_. By these definitions, the dynamic equations

could be written in a form

C T 1
C , u (4.8)

.I

in which the column vectors of matrix [A_" CT] T constitute the control space

of u. Ultimately, these column vectors affect the control of u on [Or,_'r]'r

values. Although the second nonlinear term in the left-hand side of the above

equation will alter acceleration response for a given input u, the following

analysis focuses on the direct relation between input u and system accelera-

tion response, especially/3, by investigating the properties of the gain matrix
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[A T CT] T. Equation 4.8 could be rewritten as

1
A2 J (12 + I(_) (4.9)

Since A1 is a diagonal submatrix of a positive definite matrix, it has full rank,

hence tJ resides in the column space of A,, and u can affect tJ directly. But C is

aa_ off-diagonal submatrix whose rank is indecisive, so u might not be able to

affect some vibrational accelerations directly. One situation which we define

as inaccessibility problem is that C contains one or more null row vectors. In

that case, control u loses direct access to the corresponding vibratory mode,

therefore, that particular mode is dominated by the nonlinear term f2 + K/_3

in the above equation. Notice that fl has the same gain matrix as u, so

the inaccessible problem also occurs to fl. It will be shown later that this

accessibility problem generally does not imply a controllability problem, but

without thc direct influcncc of control input u, active damping on structural

oscillation is impeded. Also, sincc f_ and K/3 arc nonlincar tclTns governing

the inacccssible modc, they must have a specific structure to dampen that

inaccessible vibration. Since f2 is _t nonlinear coupling term, constructing a

spccific f2 by u is ncithcr t,rausl)arent nor an easy task. Additionally, N/_

tel)resents structur:tl resilieut force, usiug this term tc_ re,now_ in_u:cessibh,

oscillation will c,'eatc' unwanted deformations, which _tpi_arently is not an ('f-

fective strategy. So, inaccessibility becomes a control problenl for compliant

,naa'lipulators. Another important feature of vibnttional accessibility is its

kinematic dependence. Since the value of C varies with manipulator posture,

a vibrational mode could change from being accessible to inaccessible as ma-

nipulator changes its configuration. This kinematic dependency makes the

study of inaccessibility of vibrational modes an important and valuable work

in the control of compliant manipulators.
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4.3.1 The Algebraic Interpretation of Vibratory Mode Accessibil-

ity

To investigate the occurrence of one or more null row vectors in C,

the constituent elements of C are examined. From Equation 4.7, the inverse

identity of C is expressed by

c = -A;'r.(A,-s_A_'x)-'

-(A;'_),_(a,- STA_'S)-'
= -(A;'s)_, (A,- s_A;'E)-' (4.1o)

-(A;'s).._ (A,- s_a;'s)-'
where (A_'_)i, is the ith row vector of (A_'IE) with i E {1,...,n0} and

(A_XlE)i_: E TO"'. Notice that the second subscript r indicates a row vector,

later on, another subscript c will be used to denote the column vector. Now,

for example, if the jth row of C is a null vector, then

(A;'r0j.(A,- _,A;,r_)-'= 0

which means that the jth row of C is zero when (A_-'E)j_ is orthogonal to the

matrix (A,- ETA_tE) -'. Since (A,- ETA_'E)-'E _,0×-0 is an invertiblc

matrix whose colunm vectors are linearly independent and span T¢n° space,

(A_-IE)T could be composed linearly by these column vectors. This implies

that the orthogonality relation exists if and only if the jth row of (A_-IE),

i.e., (A_IE)j,, is a null vector. This could also be shown by postmultiplying

(A,- ETA_"E) to both sides of Equation 4.10 which produces

-A;'S = c (< - S_'A;'S)

= : (4.11)

c.,. (a, - sra;'r.)
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where Cir is the ith row of C, then if tile jth row of C is zero, so does tile

jth row of A_-IE. This result reduces tile accessibility examinati(m to tile

properties of (A_-IE). Defining

D

(4.12)

where Dic is the ith column of D, then

= A2D

= [(A2n_c)(A:D2¢) ... (A2n,,0c)]

... (4.13)

where Eic is the ith column of E and Eic = A2D;_ which could be fllrther

expressed as
nO

Ei_ = E Dki(A_)k_ (4.14)
k=l

where (A_)k_ is the kth eohuun of A2, and Dki is the kth row and ith column

clement of D. Accordiug to Equation 4.12, for the jth vibratory mode to be

inaccessible, the jth row of D must be a null vector, which makes D.i i zero

fin" all i, therefore,
n_

}2i_ = _ Dki(A:)k¢ (4.15)
k=l

k#j

for all i E {1,..., no}. Which meaus that when all eolumus of Z arc linearly

independent of the j th column of As, the jth vibratory mode is inaccessible.

This could be verified from another approach. By defining

(h_-l)l,.E

A_'E = : (4.16)
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where (A_'X)_ris the ith row of A_-x, so when the jth row of (A_-I_) is a ,roll

vector, the jth row of A_ 1 must be orthogonal to E. But A_"1 is invertible, its

row vectors are not zero, therefore, it will be shown next that the orthogonal

relation occurs only when all columns of _ are linear independent of the jth

column of A2. Since A2 is an invertible n_ x n_ matrix, its column vectors

arc linearly independent, and all vectors in R'*_ space couht be composed by

A2 column vectors. Therefore, following the notation used in Equation 4.14,

the ith column of _ could be expressed by a linear combination of A2 column

vectors as
na

(_),c = _ Dk;(A2)kc (4.17)
k=l

where Dki is a scal_ coefficient. Also, since A_'IA2 = 2" where 2" is an n_ x nz

identity matrix, which implies that (A_)7_(A_)j,¢ - 6jj, with 6i_, = 1 at j = k

and zero if j _ k, then for the jth vibrational mode in Equation 4.16 to be

inaccessible, the following relation exits for all i, i.e.,

n_

(A_")i,(_),_ = _Dk;(A_")j,(ha)k¢
k=l

= Dj_

= o (4.1s)

Together with Equation 4.17, the above result shows that when every column

of _ is linearly independent of the jth cohunn of A2, the jth row of C is a null

vector and the jth vibratory mode is inaccessible. Which supports the result

derived in Equation 4.15. Although the above analysis concentrates on one

inaccessible vibratory mode, similar conclusion could be extended directly

to the case of multi-inaccessible vibratory modes, which can be stated as:

when all columns of _ are linearly independent of some particular columns of

A2, the corresponding vibratory mode accelerations are inaccessible to control

input u.
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4.3.2 The Physical Interpretation of Vibratory Mode Accessibility

The above analytic results answer accessibility problem fl'om alge-

braic point of view. Additional physical interpretation can be obtained from

the roles of E and A2 in the compliant system dynamic equations. According

to Equation 4.6, the dynamics associated with vibratory modes are expressed

by

E(} + A2_ + f2 + I(fl = 0 (4.19)

where EO and A2/_ are the inertial forces applied oll the modeled vibratory

coordinates and could be written in terms of cohunn vectors as

nO

i=l

nB

A2fl = E(A_)id_i (4.20)
i=1

where 01 and/_i are the ith element of the corrcspon(ling acceleration vectors.

Then the physical meanings of these column vectors could be interpreted

as follows. For a unit (_i, the colunm vector (E)i_ represents the associated

inertial forces on all vibratory modes, and (A2)ic is It vector of similar iner-

tial forces contributed by a unit /_i. According to the inaccessibility analysis

and Equation 4.19, it could be concluded that when all _ inertial forces on

all vibratory modes are linearly independent of a particular vibratory accel-

eration force on all vibratory modes then that specific vibratory acceleration

Interestingly, premultiplying Equation 4.19 by A_"1, weis inaccessible to u.

obtain

_} = -A_-'E0 - A_-'(A + K/_) (4.21)

If 0 is considered as control input to the above equation, then any vibratory

acceleration inaccessible to u will also be inaccessible to 0 and vice versa.
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In order to have a better understanding on the above interpreta-

tion of vibratory mode inaccessibility, a simple lumped parameter example

is given for illustration purposes. The example, as shown in Figure 4.1 (a)

and (b), is a two-link arm modeled with two lumped vibratory modes. For

simplicity both links are assumedmassless,only the payload has a mass m

and moment of inertia I with I = diag[/,, Iy, Iz]. In this example, the first

link is considered rigid but the second link is compliant and modeled by two

vibratory modes, in which the first vibratory mode, denoted by ill, represents

end-point transverse deflection, and the second vibratory mode, denoted by

f12, depicts axial torsional deformation. As shown in Figure 4.1, these vi-

bratory modes are orthogonal to each other, and the translational mode fll

is parallel to sccond joint axis, i.e., Z2, and the twisting mode f12 is along

the X2 direction. Let 01 be the first joint parameter and 8_ be the second

joint displacement measured fl'om horizontal position. Thcn the generalized

inertial matrix for this example is

(,,al + - rx) cos + Ix
0

1" "-
-ml2 cos 82

Ix sin 82

0 -ml2 cos 82

ml_ + _ 0
0 M

0 0

In Figure 4.1(a), the second link is positioned at 82 = 0 where

Ix sin 02

0

0

(4.22)

In the above equation, both columns of E are linearly independent of the

second column of A2, therefore, according to the analytical interpretation, _

(but not _1) is inaccessible. It will be shown that the inaccessibility is due to

geometric orthogonality. Since 02 rotates about Z2 which is normal to both

_l and _2 vibrations, the second joint input can not access both modes in

E= 0 0 ; A2= 0 I:



82

01

(× 2>I_ 2

( e2=0 0 )

(Z

(a)

Z
2

f

X2= Z I

m,l

!_ _1(Z2)

_ o

180

( e2= 90 °)

(b)

Figure 4. I Inaccessible Positions of Two-Link Arm
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ally configuration. This result could be verified from Equation 4.22 directly

where the third and fourth row elements of the second colunm are always

zero. Hence, the accessibility analysis concentrates on the first joint effect.

When/?2 = 0, 01 creates an inertial force on the payload along Z2 which is

parallel to fll direction, then according to Equation 4.21, El will be accessible.

However, the torque on payload due to 01 is along the _'_ direction which is

normal to the f12 oscillation, hence f12 is inaccessible at this position.

In Figure 4.1(b), the second link moves to/92 = 90 deg, and

_= I_ 0 ;A2= 0 I.

which shows that both columns in P_ ale independent of the first column of A2,

therefore, _l (but not _2) becomes inaccessible in this position. Physically,

01 and _2 spin about the same axis at this position. Hence, the first joint

can access the twisting mode. But 01 motion is normal to the fll lateral

deflection, hence both joint inputs era1 not, access _qL. Through the simple two-

link examl_le , we introduce the physical metaling of inaccessibility problem

and also address its dependency on system kinematics. Notice that iu this

example, the inertial force and torque on both pseudo joints are contributed

only by the payload, so the assumption of massless links does not oversimplify

the results.

The next exmnl)le is to investigate the inaccessible positions of a dis-

tributed parameter model. Now, the second link of the two.-link arm in Figure

4.2 is flexible and modeled as a continuous beam whose lateral deflection is

described by two assumed modes with polynomial mode shapes
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in which r is a distance variable along link 2 which has a length L_, alld Ct

and ¢2 are orthogonal such that f L_ ¢1¢2dr = 0. In this example, only the

lateral deflection along Z2 is modeled, and it is assumed that rotatory inertial

effect is negligible. So, for a uniform beam with mass m, mass moment of

inertia Is = diag[I_:2 Iu2 Iz2], and a point-mass payload M, the 2 × 2 Y] and

A_ matrices are given by

5]= 4 cos 0: - ML2 cos 82 0 "A_= g +M -0.2M
--_01mL2 cos02 + 0.2ML2 cos02 0 ' -0.2/1I 12m210 + 0.02M

Apparently, at cos 0_ = 0 both columns in E are linearly independent of any

colunm of A2, hence both vibratory modes are inaccessible when 02 = 2___A_
2 "

for any integer n. This result is consistent with that of the lumped two-link

example in Figure 4.1. Notice that the second column of the above 53 is

always zero, which means that the second joint actuator can not access tlw

lateral vibration all the time. Such a result is predicable from the geometric

orthogonality between the second joint and the lateral vibration. Geolnetric

orthogonality also causes inaccessibility of both assumed modes to the first

joint, that is, when the second link is coaxial with the first joint, the moment

arm between the first joint and the lateral deflection vanishes, therefore, the

first joint contributes no motion to the latcr_d deflection and consequently

loses access of the lateral deflection.

4.3.3 The Structure of E and A2

Due to geometric orthogonality, both inaccessibility analyses in th( _

above two-link examples have interesting kinemtttic interpretation. However,

in a general coml)liant mmfipulator where multi-link compliances are encoun-

tered, kinematic interpretation of the inaccessibility problem is not as trans-

parent as in the two-link case. The following analysis will reveal the actual
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Figure 4.2: A Two-Link Arm with the Second Link Modeled by a
Continuous Beam
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nature of E and A2 from which kinematic complexity of the inacc,_ssibility

problem will be evidently clear. For a lumped parameter model, the inertial

matrix could be expressed by the first order influence coefficient representa-

tions as

[A1 ET] N=E {m, + .aTe,.a,} (4.25)
i=1

where yGi E T_3×("°+'a) is the G flmction associated with translational mo-

tion of link i, and nGi E R 3×('*+'a) is the G function associated with link i

rotational motion. Also, Ii E 7_a×a is a generalized moment of inertia defined

as

I, = T,.I_'T_T (4.26)

in which T_ E R a×a is a transforlnation nmtrix converting the local coordinates

dcfincd in the ith fi'ame to global coordinates, and I_ E 7_3×3 is the moment

of inertia of link i defined in the ith fi'ame. The upper limit of summation, N,

is the total number of links including payload. By dividing the G functions

into two submatrices as

ra, = [( ,rC,,)o( rC,,)l,]

RGi = [( ,_Gi)o ( nGi)z] (4.27)

where ( TGi)o , ( RGi)o 6 ,]-_3x,o and ( TGi)_, (RGi) _ 6 7¢3×''0, then Equa-

tion 4.25 could be expanded into

[A, E T ] N{ [(TGi)To(TGi)o (TGi)T(TGi)p]
i=l

[ ( RGi)TIi( RGi)o ( RGi)To Ii( RGi)o ] }+ ( .Gi)_ii(nGi) ° ( nal)_,Ii (nGi) _ (4.28)

by comparing term by term, the submatrices E and A2 have the following

equivalent forms

N

E = E {rni( TG,)_'( TGi)o + ( .Gi)_I,( .ai)0} (4.29)
i=1
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N

A2= E {m,(Ta,)_;(Ta,), + ( ,a,gz,( Ra,)_} (4.30)
i=l

Similarly, for distributed parameter model,

N

N

..v.{/(," / }= TG,,)0 ( wGp,)adm + ( nap,);J'(,lI)( RGp,)a (4.32)
i---I

Dctails of both hunped and distributed paranletcr dynamics are given in

Chapter 3. Although the kinematic interpretations of the above G flmctions

are well-defined, they can not be extended to _ and A2 directly because

the kinematic rclations are coupled after the matrix multiplication. Besides

that the mass and moment of inertia of all links are mixed in the _ and A:

expressions, that makes it dil-ficult to obtain a simple geometric interpretation

of the inaccessibility problem. So, before the kinematic effects of vibratory

mode accessibility could 1)(: understood thoroughly, inaccessible modes can

only bc identifird from _ and A= mla]ytic_tlly. Since it is highly demanding

to check the dclmn(lency of ettch column of £ mid A_, t_ practical al)l)roach is

to compute A_-lP_ symbolically to examine the occurrence of row or rows of

zero vectors.

4.3.4 Case Studies of Inaccessible Vibratory Modes

To further examine robot position effects on vibratory mode acces-

sibility, a three-link manipulator is modeled increasingly with one, two, four,

and eight lumped vibratory modes. In each case, the inaccessible nominal

position is computed symbolically for each vibratory mode. The purpose of

using increasing number of vibratory modes is to check whether consistent in-

accessible positions would be obtained as the modeled vibrations on a given
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system are varied. Figure 4.3 is the three-link maaipulator with all eight

lumped vibratory modes. Each vibratory mode depicts a link deflection in a

particular direction. Notice that each local frame is shifted to the distM end

of the link to assist description of vibratory mode directions. For example, fll

is the first link lateral deflection along the xx direction, f14 is tile second link

laterM deformation along the y2 direction, and f16 is the third link twisting

along the x3 direction, and so forth. These local coordinates will bc hclpful ill

presenting the investigation results. For example, when four modes,/31, _q_,

f13, and fl5 are modeled, they will be denoted a.s xlylx2z2 for compact indi-

cation of' which link and direction of vibrations are involved in the study. In

these eight vibratory nmdes, f14 (y2) and/3r (Y3) are always accessible because

kinematically 02 can affect/34 directly, so does 03 to/_r. Therefore, they are

excluded from the following report. The other six inaccessible mode results

are tabulated in Tables 4.1 (a) to (f), and in each table, the inaccessible mode,

the modeled vibratory modes, and the inaccessible position arc listed.

Table 4.1 (a) /3, (x,)mode

modeied vibrational modes inaccessill)le position (deg)

xl 02 - 0 or 180 m{d 03 -- 0 o1" 180

xlyl 0,_ = 0 or 180 and Oa = 0 or 180

xly|x_z2 '0:2= 0 or 180 and 03 = 0 or 180

xlytx2z2x3z3 02 = 0 or 180 and 0:_ = 0 oz" 180

xlylx2y:2z2xay3za 02 = 0 or 180 and 03 = 0 or 180

Table 4.1 b) f12 (Yl) mode

modeled vibrational modes inaccessible posi'tion (deg)

Yl 02 = 90 or 270 and 0a = 0 or i80

xlyl 02 = 90 or 270 and 0"3 = 0 or 186

xlylx2z2 02 = 90 or 270

xlylx2Z2XaZa 02 = 90 or 270

xxylx:2y2z2xayaz3 02 = 90 or 270



9O

Table 4.1 (c) /33 (x2 mode

modeled vibrational modes

.T2

X2Z2

xlylx2z2

Xlyl X2Z2X3Z3

xlyl x2y2z2x3yaz3

inaccessible position (deg)

02 = 0 or180 and 03 = 0 or 180

02 = 0 or 180 and

(0a = 0 or 180 or 0a = 90 or 270)
02 = 0 or 180 and

(0a = 0 or 180 or 0a = 90 or 270)

02 = 0 or 180 and

(03 = 0 or 180 or 0a = 90 or 270)

02 = 0 or 180 and

(0a = 0 or 180 or 0a = 90 or 270)

Table 4.1 (d) /35 (z2)mode

modeled vibrational modes inaccessible position (deg)

z2 ' 02 = 90 or 270 and 0a = 0 or 180

02 = 90 or 270 and 0a = 0 or 180X2Z2

xlylx2z2 02 = 90 or 270

xxylx2z2xaz3 02 = 90 or 270

ahyla'2y2z>raY3za 02 = 90 or 270

Table 4.1 (e) /36 (a:a) mode

modeled vibrational modes inaccessil_le position (deg)

x3 (02 = 90 or 270 and 0a = 90 or 270) or

(0._ = 0 or 180 and 0a = 0 or 180)

,r3z:_ (02 = 90 or 270 and 0a = 90 or 270) or

(0_ = 0 or 180 and 0a = 0 or 180)

XlYlX2Z2XaZ3 0 2 = 90 or 270 or 03 = 0 or 180

xlylx2y2Z2XaYaZ3 0:a = 90 or 270 or 03 = 0 or 180

Table 4.1 (f) /3s (z3)nmde

modeled vibrational modes inaccessible position (dog)

z3 02 = 90 or 270 and 03 = 0 o," 180

X3Z 3 02 = 90 or 270 a.nd 03 = 0 or 180

XlylX2Z2a'aZ3 02 = 90 or 270 or 03 = 90 or 270

XlylXay2z2xay3z3 02 = 90 or 270 or 0,3 = 90 or 270

For example, in Table 4.1 (b), when a'lyl vibratory modes are modeled,

fl2(Yl) is inaccessible at 02 = 90 or 270 deg and 03 = 0 or 180 deg, and

in the :rlYlX_Z2XzZ3 case, the inaccessible position of fl_(yl) mode is at 02 =

90 or 270 deg regardless 0z value. Notice that both results are consistent,
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because 02 = 90 or 270 deg and 02 = 0 and 180 deg is a special case covered

by the general outcome that fl2(yi) is inaccessible when 0.2 = 90 or 270 deg.

Similar tendency could also be observed from the above tables that when

larger number of vibrational modes are modeled the results are much com-

plete and general. Details of A_I_ symbolic results are listed in Table 4.2.

Since A2 is an invertible matrix whose determinant is not zero and has no

effect on the final results, Table 4.2 is generated by the product of the adjoint

of A2 and _. Since the example is a three-link manipulator, each row vector

of A21_ contains three elements. In Table 4.2, the three row-vector elements

associated with each vibratory mode are denoted sequentially by [1], [2], and

[3] for the first, second, and third elements. The symbols used in Table 4.2

are described below, mi is the mass of link i with i = 1,2, 3, and payload

with i = 4, also li is the link length, ri is the center of mass location along link

i, and I_ = (tiag[l.i, I_;, I_] is the m(_mcnt of inertial. Interestingly, in the

results some particuh_r row elements a.rc always zero despite the manipulator

configuration, which nlea.ns that the corresponding actm_t, or inputs can not

access that vibratory mode in any robot l)osition. In th,' symbolic results, the

common sinusoidal terms are highlighted, and once they take on a value of

zero, that vibratory mode has a null row vector and becomes inaccessible. In

the case studies, we examine the inaccessil)le 1)osition of a lumped parameter

model. Now, one interesting question is that could lumped parameter results

be extended directly to distributed parameter model? This means that if tlw

first mode is inaccessible then docs that imply inaccessibility of higher order

modes? Although such implications are observed fl'om the two-link examples

in Figures 4.1 and 4.2, yet, due to complexity of _ and A2, we could not answer

the question analytically. However, since the first mode dominates structural

deflection, its inaccessibility should be identified and avoided. Therefore, we
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emphasizethe first mode instead of other higher order modesinaccessibility

in the three-link arm casestudies. But it shouldbe noticed that the algebraic

and'physical interpretations of vibratory mode inaccessibility are built on a

symbolic form general for both lumped and distributed parameter models.

Notice that no joint compliance is modeled in the casestudies be-

causein modeling a joint compliance the pseudo joint is added collinearly

with tile 1)hysicaljoint, henceboth nominal and vibratory inertial torques

projected on all vibratory coordinatesare linearly dependent, therefore,joint

vibration is always accessibleand henceexcluded from the study. Tile in-

vestigation of inaccessiblevibratory modes is important to off-line decision

malting on mmfipulator architecture and working position. It constitutes a

criterion to help tile user to choosea suitable mmfipulator for a given task.

And for existent manipulators, finding out the inaccessibleposition will avoid

mmlilmlators flom working in undesirable positions where structural vibra-

tions can not be dampened actively. As mentioned before, inaccessibility

prol)lem is distinct from the.controlla.bility 1)roblem.Despite the fact that it

is difficult to control an inaccessible vibratory mode, tile controllability of an

inaccessible mode will be discussed in the next section.
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Table 4.2

X 1 of X1

[11
0

[2]
(-13m, - ,-3m_)cos(e_)slnIe_)+ (-Z_m, - r_m_)sln(0_)co8(03)+

[31
(-lam 4 - r3ma)cos(8_)sin(O3) + (-13m4 - ram3)s|n(O_) cos(03)

xl of x.lyl

[1]
0

[2]

(-I_,,_2 + ((-13 - ,,_),,_-l_,_),,_,, - ,,_3 _-,,_,,_m_)_i_(o_) co_(O_)
+(-12m42 + ((-12 - rz)m2 - 2/2mz)m4 -12,n32+

(-12 -,'2)m2ma - r2m22)sln(O.,)

[3]
(-lam., '2 + ((-13 -,'a),nz -/3mx),n, -,':,ma 2 -,'3m2m_) cos(O2)sin(Oa)+

(-13m,_+ ((-13 -,-3)m_ -13,_),_, - ,._,,_;'- _._m_)_i,,(0_) cos(O_)
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Table 4.2 (continued)

x_ of xlylx2z2

[i]
0

[2]
( ( (-l,J + 2,.3132- F32/3)TYt2013 "31"-(--/y4 -- /y3 -_- Ix4 "3t- I.,3 )13m2 )m42 +

((-,.:,t.__+ 2,.3_t:,- ,-J)m,:,_3 2 + ((-i% - Iv3 + Ix, + 1.:,)13-
,'3Iy,, - "3Iv3 + "3I_:4 + ,'31.3)m2m3)m4+

(--1'3/1/4- r3Iy3 + 1'3Ix4 "iv r3Ix3)/'/,211132) COS(02)Si113(03)+

((((-/z 3 + 2rz/.32 - ,'z213)m2mz + (-Iv.,- Ivs + 1..4 + Ix3)13,n2)m42+

((-,-zz_ + 2,-z% - ,-_3),,w-,,z_+ ((-I,,., - L,z+ 54 + Lz)z3-
,'3I_,, - ,'3I_3 + r3L4 @ ?'3G3)Y/12T/13)Ivt4 -}- (-r3/y4 - 1"3/113 -1t- ?'3L4-_-

,'al_a)m2ma2)sin(O.)cos(Oa) + (((-12la 2 + 2r31=lz -,'3212),n2,na+

(-.,,-,,,1_7 z_,zl_+ L.,12+ 5_I_),,-,2)m.,2+
((-- 12132 + 2r31213 -- ?'3212)1712YI232+

((-v213 '2 + 2r2,'313 - v2,'32),n22 + (-2I_.t/2 - 2I_3lx + 2I_,,12 + 2I.flz)m2)m3+

(-,'2I v, -,'2I_3+ ,'2I_, + ,'.2/.3)m22)m4+

(-Iv, Z2- I/_ + L, t2 + I.3t_),,w,,3'+
(-"2Iv,t- "2I_3 + r2I., + r2[.3)m22m3)sin(O.)sin2(Os)+

((-L., - I.,,_)1:,,,,:,,-,'+ ((-L.,- G._)t:,-,'._L,,- ,.31,3),,:w-,-,.,+
(-,.:, L, -, :,L :,),,,:,, 3"),:o..,(0,)_i,,(o:,)+
((-/_., - I_:,)13,,,.,,,t4 "2+ ((-I.,.t- 1.3)13 -,.:,I., - ,'n/_3),,t2,,,:,,,t.,+

(-,'3L., - ,'3L3),,*2,n32)sin(O,) cos(03) + ((-L..t/2 - L..J.2),,,2,-., 2
+((-2L.,/2 - 2L:d.2),,,2,,,.J + (-r_L., -,'2L3),n22)t,L,+

(-I_412 -- I_312)m2,n32 + (-r2I_.4 - ,'2I_3)m22m3)sin(O_)

[31

(((-tz 3 + 2,._t3_ - ,.z%),n:,_ + (-Iv_ - Ivz + L., + L:,)l:,,,_._),n.,_+
((--r3/32 + 2r3213 -- r33)m2m32+

((-I,_ - z_z+ I_ + L3)l:, - ,-J_, - ,Jr3 + ,'3L.,+
r3I,.3)m2m3)rn4 + (--r3Iv4 - r3Iv3 + 1"3[x4 + ,'3/_3),n2,n32) cos(O2)sinZ(03)

+(((-/33 + 2,'fl32 - r3213)m2m3 + (--I_4 -- Iv3 + I_4 + L3)13,n2)m,2+

((--?'3/3 2 "4- 2r3213 - rzZ)m2'-rta 2 + ((-Iv, - Ira +/.4 +/_z)13-

r3I v, - ,'3Ira + ,'3I., + ,'3/.3),rt,m3)m.t+

(-,'3Iv4 - r3Iva + ,'3/_4 + rJ_:3)m_mz2)sin(O,)cos(Oa)sin2(03)+

((--/'x4 -- /x3)/3'n2m, 2 + ((--L, -- /'x3)/3 -- r3/rx4 -- 'r3La)m2m3m,+

(-,'3/_, -"3/_3)m:*z2) cos(O2)sin(03) + ((-G, - I_3)13m2,nJ+
((-L, - I_z)t3- ,'3G, - ,._I.3)m:w,_+
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Table 4.2 (continued)

xl of xIyIX2Z2X3Z 3

0

[2]
((-l_d/_ - 1_j_l_ + X_1_.l_)m:_:_J +
(-,.j_j_ - ,.j_j_ + ,-j_j_,),_:_: m,) _0_(0_)_in3(03)+
(((-LJ_4h - G4I_313+/_3I_j_),rt:_smJ+
(-r3Ix4Iy, I - F3fx,lly 3 -_- l'3Ix3fx4 )11121113211_4)si11( 0 2) cos(O 3 )-3I-

((-L:,I_J2 - I.aI_._t2 + I_3I.,12),,_2m3mJ +
((-I_aI_,.tl2- I_:.tlv312+ I_3I_:.t12)m2m32+

(-rzL4Iv4 -r2L.tlu3 + v2I_3I_4)m22m3),n4)sin(O_))sln2(O3)+

(- LJ., t:_:,:_2 - ,.j.j.,,n :. 3_,,,.,)¢os(0_)_in(o_)+
(-I.3I,_.tl3m2m3,,z.t 2 - ,'31.3I.,m2m32,n,t)sin( O_) cos(03)+

((- I_.'3I_:.t12m2m32 - v2 I_.3I,:¢*,22,.:, ),..t -/_3I_..t l',.m2,n3m,,2)sin( O=)

[3]
( (-- Ix,tlv,tl 3 -- L,4Iv313 +/z3/_,t/3),n2m3m,t2+

(-,'3L4Iu4 -,'_L:.tlv3 + r3I_3I_,t)m2mz2"t._)cos(O2)sin3(O3)+

((--Iz4Iva13 -- Ix4Iv313 + /x3/'x4/3)T/'/2/l/3T/'t42"4-

(- r3/_, Iv4 - r3G4 I_3 + r3/_3G4)m:_z2,n,,)sin(O_) cos(O3)sin2(O3)+
(- L3/_4/3m 2,n3,,t.t 2 - v3 Gu/_a m2m32,n4 ) cos(02 )sin( O3)+

(-- Ix3Iz.tl3m2m3,n42 -- r3Ix3Ix,t,n2,n32m.t )sin( O_ ) cos(03)

X 1 of .rt yt 2"2Y2-72.T3Y3Z3

0

[2]
( -,'2 I_:.tlv.t - ,'2I_:,, Iv3 + r2 I_3I_.t ),n22 m3m43sin(O_)si n a (03) +

((-r3I_4Iv. , - r3I_.tIv3 + ,'3/'_J_,)m2m:_2m43+

(-r3I_.,l_,.t - ,'3I_41,,z + r3L3I_.,)m2,nz3m._2)cos(O2)sin3(O3)+
((--v2L4Iv,t -- ,'2L,t/v3 + F2/x3fx4)'"t22r//.337"t42-

v2I_,slx,tm22m3m,tZ)sin( O_)sin2( Os)+

--r2 I.:3I_:.tm22m32ma2sin( 8_ )

[3]

( (-r3Ix4Iy 4 -r3fx4Iy 3 -3t- r3Ix3fx4 )Ii_12,,z32,yt43.4 -

(-,'_ LJ_, - ,'J_J_ + _ z_J.,)m:_,_, _)¢os(0=)sin_(o_)
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Table 4.2 (continued)

Yl of Yl

[_]
(--13,n4 -- ram3)sin(O2)sin(O3) + (13m4 + 1"311_3)COS(0a) C0S(03)

+(l_m, + 1_m3+ ,,_,,_)co_(0_)
[9]
0

[31
0

Yl of x,y,

[1]
(-/3rni 2 + ((-13 - r3),na - lam2)m4 - r3m32 - r3m2,n3) sin(O_)sin(Oa)+

(I_,,_4_+ ((13+ ,-_)m_+ t_,,_)m, + ,.3m3_+ ,'_m_m3)¢o_(O_)co_(O3)+

[2]
0

[31
0

y_ of xxy_x2z2

[1]
(((,'_13 2 - 2,'_,'ala + ,'2,'a2)m2m3 + (,-2Iu, + ,.2Iua -r2I._..t - ,'2I_3)m2)m,2+

((,'21a 2 - 2r2,'3/a + ,'2,'32),n2m32 + ((,,21a 2 - 2,'2ra13 + ,'2,'32)m_2+

(2,'2Iu4 + 2r2/u3 - 2,'2/_4 - 2,'_I_3)m_)m3+

(,'_Iu, + ,'2Iua -,'2I_4 -,'2I_a)m22)m,+

(,-_,_,+ ,-_z_ - ,-_z_,- ,._z_),,w,_ _+ (,.=i_,+ ,-_z_ - ,-_t_, - ,._1_),,_,,,_)
co_(O.)_i_(o_) + ((,',L., + _L_),,w., _+ ((2,._z_,+ 2_z_)m,,,_+

[2]
0

[3]
0
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Table 4.2 (continued)
yl of xlylx2z2x3z3
[1]
((r2rx4_4+ _2_xJ_3- _3_),_,_3,,_ _+

(_2I_3I_:_:_:J + (, _I_3I_._,_ _+ _2I_3X_4m_m3)m_)cos(0_)
[2]
0

[3]
0

yl of x!ylx.2y2z2x3y3z3

(,.21.4I v, + r2I_,I,3- ,'2L3/_4)m2m33mJ)cos3(O_)+

(r2/x3/x4rn22,n3m43 + (7"2L4/y4 -+- ,'2/=4Iu3 - r2/x3/x4)

,n_._32,_42)co_(O_)_i_(03)+
(r2Ix3/x4,n2m32y//43 + r2L3/'x4Ylx2,,t33r/z42)cos3(O_)+

r2 I=3Ix4m22m32m42cos( 82 )

[2]
0

[3]
0
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Table 4.2 (continued)

x2 of x2

(/3_nz4 + ra2rn3 + Iv4 + Ivz)sin(e_)sin2(ea)+

((-z_m, - _._- i,, - x,_+/_ + x_) _o_(O_)_o_(O_)+
(-121am4 - ral2m3) cos(O2))sin(Oz)+
(_._+ z_)_in(o_)_os_(O_)
[21
0

[31
o

X2 of Z2Z2

[1]
(((t__- _l_,)._ + z_ + x_ - x_ - _)._+
(Ira + Iv3- I_4 - l_3)m3)sin(O_)sin2(Oa)+

((I_4 + I,_s)m,, + (L:4 + I_s)m3)sin(O_)

[2]
0

[3]
0

x2 of x_yix2z,2

[1]
(((l__- 2,._i_+ ,._),,_,,_ + (i_ + I_ - L,, - l_),,_._),n.,"+
((/32 -- 2r3/3 + r32)m2m32 + ((/a 2 -- 2r3/3 + ra2)m22+

(2I_4 + 2Iyz - 2Ix4 - 2/_:3)m2),n3 + (Iv4 + Ira -/_4 - I_.:,),,_2_),n,,+

(Iy4 + Ira - I_., -/_a),n2m32 + (Iy4 + I_3 - I_4 - Ix3)7_2'2,_.:,)sin(O_)sin2(O:_) _-

(((--/32 + 2r313 -- v32)11_2,1_3 + (--Iv4 -- Iv3 + Iz,t + /x3),tt2)n,42+

((--/32 "+ 21"3/3 -- F32)_'It2T/'_32 "3t- ((--132 "3L 27"3lz -,'3u)m22+

(-2I_4 - 2I_3 + 2L4 + 2/_3)m2),n3 + (-Iv4- Ivz + L-4 +/.s),n_2)m.,+

(-Iv4- Iv3 +/_4 +/_3)m_2m3) cos(02)cosIO3)sin(03)+

((L_ + L_)7,_m__+ ((254 + 2G_)._.,._ + (L_ + L_)._.2),,_,_+
(/_ + L_)m_,,_z_+ (G_+ G_),n'_,,_)_in(o_)
[2]
0

[3]
0
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Table 4.2 (continued)

x2 of xlylx2z2xaza

[1]
((r_4I_4+ x_j_3- ±_j_4)m2,,_..__+ ((x_j_4+ i_j._ - _j_,)m_,,_+
(I_4Iv4 + I_4Iv3- I_aI,:4)m22ma)m4)sin(O_)sin2(Oa)+

((-/_41v4 - I_41va+/x3/x4)r_2m3,_z4 2+

((-L41_4- L41_3+ L3L4)m2m32+
(--L4Iv4 -- Ix4Iy3 + L3I_4)m22rn3)m4)cos(O2)cos(63)si,l(03)+

(L3L4,]_2.g37]_42 2ff (L3L4,?Z2,n32 __ L3L4,]222?)Z3)?n4 )Sill(O a )

[2]
0

[a]
0

x2 of xxylx2y2z2x3Y3Z3

[1]
( Ix,tIv,, + I_:,,Iu3 - Ix3Ix4)ma2m3,n4asln(O_)sin 4(03)+

(-I_4Iy4- I_.,[va + L:3/_4)m22,n3m43 cos(O2)cos(O:,)sin'_(O._)+

(((LJ_ + L,,_3 - LJ._ ),,w,__,._"+
( I_4Iv4 + I_4Iv3 -/_.,_/_4)m2ma:_m42) c0s2(0.2) +/xaL,tm22m3,n,, 3 +

(L,tlv4 + I_4Iy:,- I_3I_4)m2,na2m,t2)sin(O_)sin2(O_)+

( ( (- I_4Iv4 - I._,,b a + I,,.fl.,.t )m2m:(z,,,..t'J +

(_ x..,,r_4_ ,r_.r. + L..5_),,,_,..",,,.?) co_(0_)+
(-L4I_4 - L4I_3 + L3L,t)m22,,_3_._42cos(O.2))cos(O_)sin(03)+
((L3 L.tm2,,_2,,u _ +/_3 L,,,,w,_._:_-_,,2) (:os2(02)+
/x3 L,t nz22,n32 re,t2 )sill( O_ )

[2]
0

[a]
0
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Table 4.2 (continued)

Z 2 of Z2

(13,n4 + r3,n3 ) sin(02 )sin(03) + (-lain4 - r3m3 )cos(O_ ) cos(Oa )+

(-12m4 - t2,n3)cos(O_)

[2]
0

[31
0

Z 2 of X2Z 2

[1]
(,'3132m3m._ + (,'3I_,4 + ,'..,I_,3-r31_4 -,"a[_:3)m3)sin(O_)sln3(03)+

(((-,'3 I_,4 - ,'3I_,3 + ,'3I_4 + '_'J.3)rn3 -r_132m3m._)eos(O_,)cos(03)+

((-t2t32m3 - I_4t2 - I_3t2 + I_,t2 + I_t2),n4+

(-I_,,12 - I_,312+ I_41._+ I_312)m_)cos(O._))sin2(03)+

(r3/_4 + r3I_.3)m3 sin(O2)sin(Oa)+

((-I_4 - I_3)l_,n.t + (-rJ_:.,- raI,:3)ma)eos(O,)cos(03)+

((-IJ2 - I_312)m, + (-L.,12 - I_31_)m:_)cos(O_)

[2]
0

0

z2 of xaylx2z_

[1]
((((,._- l_)t:?+ ,._(2l._- 2,-_)t_+ ,.:?(,-_-4)),_,,_._+

(((,,_- t_)t__+ ,._(2t_- 2,-_)t,_+ ,._(,._- z_))m_m_+
(((,'_- t_)z_2+ ,-_(%- 2,-:_)t:,+ ,.._(,-_- l_)),,_+
(I_4(2/_ - 2r2) + I_3(212 - 2r2) + I_4(2r2 - 2/2)+

I_z(2r2 - 2/2))m2)m3 + (I_.,(12 -,'_) + I_._(l_ - ,'2)+

Iv,(r2 - t_) + I_3(r_ -/a))m._)m,+

(I,_,(12 - r_) + I_(1_ - r2) + lu,(r_ - l_) + I_3(,'_ - t_)),n_m._+

((-I_, - I.3)l_m._ma _ + (((-I_a - X_.3)13-,'3L,_ -,'3I_.3)m2m3+

(-Ix, - I=_)t_m_2),z4 + (-r3I., -r3/.3)m2,/t32+

(-,-_I_, - r3I_)m_2.,_)cos(O_) cos(O_)+
((/_4(r2 - 12) +/_3(r2 - 12))m2m_ _ + ((/_(2r2 - 2/2) +/_(2,'_ - 2l_))m2m3+

(L,(_ - z_)+ z_(_ - z_))m_)m, + (I_,(,,_- z_)+ L_(,'_- Z_))m_m3_+
(I_,(r_ -t_) + I_3(r_ - l_))m2_m3)cos(O_)

[2]
0

0
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Table 4.2 (continued)

z2 of xlylx2zaxaz3

[1]
((I_3I_4(12- r2) + I_41_4(r2- 12)+ I=41_3(r_- 12))m2m3m42+

((I_31_(1:- _)+ 1.j_,(,-:- I_)+ l.d_3(,-_- l_))-,_m_+
(I._l._(l_- _)+ l_j_(_- I_)+ r.d_(,'_- z_))-,_.,_)._.,)co_(O.)_in:(o_)+
((_, 3_3r_4m2m32- r3r_3r_4,,_22._3)m4-, 3r_J._,,_2,,_3m42)cos(8,)_o_(03)+
(Ir_3I_4(r2 - 12)m2m3m42 + (I:J=4(r2 -/2)m2m32+

[2]
0

[3l
0

z2 of xtylx2y2z2x3y3z3

I_,,I_3(r2 - 12))m2 2m3m4 3 cos(O, ) siu4(Oa )+

(-r3L3I=4m22m3,n43cos(O,) cos(O,) + ((/_,I=,,(12 - r,) + I=41,4(r2 - I,)+

_J_3(_2 - t_))._m_,_2 + (_..J_(12- ,._)+ LJ_,,(,.2-12)+

(I.31.4(r2 - 12)m22m3m43 + (I..J.4(I2 - ,'2) + I-',Iu',("2 - 12)+

I_aIv3(r2 -12))m22m32mJ)cos(O.))sin2(O._)+

((--r3Ix3/_4rn2rn32m43 -- r3I,.3 rix4)n2m33)n,t2)cos3( {_,)--

r3/_3I..4 m22m32 m42 cos(O.)) cos(a3) + (/_.:)I.4 (,'2 - 12)m2,n32m43 +

/_.3/:.4(,2 - t2)m_m 3_mJ )cos'_(e. ) + L:._L,,(,'2 - 12),,z_2,. :_2m42cos(e. )
{2]
0

[3]
0



102

Table 4.2 (continued)
X 3 of X 3

I_4cos(O_)sin(Os) + Ix, sln(0.)cos(e3)

[2]
0

[3]
0

X3 of X3Z3

[1]
Ix4 m.4 cos(O 2 )sin(03) +/_4 m4 sin(02 )cos(Oa)

[2]
0

[3]
0

X3 of XlYlX2Z2X3Z3

[11

(x_j_. + x_j_ ),,_,,_ )m,)co_(O.)_._(o_)
[2]
0

[3]
0

x3 of xlylx2y_z2x3y3z3

(/_4/_4 _- I=41_3)m2_m3m43cos(O_)sin3(Oa)+

(I._. + r_j_)m_._._2_o_(O.))_in(O_)
[2]
0

[3]
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Table 4.2 (continued)

z3 of z3

lzm, sin(82 )sin(8 a) --/3m,eos(8_) cos(03) - 12m, cos(O_)

[2]
0

[3]
0

Z 3 of X3Z 3

[11
I_4/3rn4 sin(62)sin(0z) - Ix413m4 cos(0_) cos(t?3) - I_412m,cos(6_ )

[2]
0

[31
0

Z 3 of XlUIX2Z2,"C3Z3

[1]
(1_:3I,_4(rz - 13)m2m3m, 2 + (I_J_,t(,'3 - 13)m2m32+

z_J_(_ - l_)m_,_)m_)co_(O_)_o_(O3)
[2]
0

0

Z 3 of XlYlX2112z2x3_Y3Z3

[a]

((Ix3I_,t(r3 -13)m2m32rna 3 + 1.3I_.4(,'3 - 13),n2m33m,Z)cos3(O=)+

I_:3Ix,(r3 - 13)m22m32m,2cos( tg_ ))cos(03)

[21
0

[3]
0

4.4 Controllability of Inaccessible Vibratory Modes

It is well known that for a linear, time invariant system

_c = Ax + Bu E TC' (4.33)
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the global controllability can be examined by the rank of the controllability

matrix

qd = [B AB A2B ''' A'_-IB] (4.34)

If _ has a rank n then the control space of u covers 7_ n and every desired state

could be reached in finite time. However, nonlinear system controllability can

only be exaxnincd point by point (local controllability). Local controllability

indicates the reachability of a loca ! point by any nearby point inside a small

region surrounding that local poin t. If every local point is controllable and

the union of all small reachable regions covers the whole state space, then the

global controllability of nonlinear System is ensured. According to Kalman's

discussion in [Mm'kus and Lee, 1962], for a nonlinem" system

.4 = f(t,x,u) (4.35)

the local controllability at (xo, %) can be (h'tccted by lin,'arizing the nonlin-

ear equation around the given point and then checking the controllability of

the linear equation. This method will be used here to investigate the control-

lability of inaccessible modes. The results will show the distinction between

accessibility and controllability of vibratory modes. Recalling that compliant

mmfipulator system control equation is defined by

_/ cr 1
C . u (4.36)

.l

Let

8.,[,]
and also set

E 7_n°+'_o; x2 = /_ E ; x = x_ E T/2('°+'_) (4.37)

[A,ccT][A2]E 7_ ''°+'_ (4.38)
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and

then Equation 4.36 could be written in a state spaceform as

(4.39)

Xl "-- X2

_2 = h(x,,_.2)+ w(x,),, (4.40)

whose variational equation around an operational point (xl, x2, u) is

6_1 = 6x2

6_ = 6h(_;_,x_) + 6(W(x_)u) (4.41)

By taking the first order approximation, the variational equation has a linear

form

6_1 = 6z2

6_2 = ¢16xl + @25x2 + W(xl)6u (4.42)

where

_2

= ah(:,:,,)l
ax, J

= oh(x,,x,)]
a_2 J

[aw(x,) ]+ [ Oxl u C/t ("*+"_)x("°+"_)

E 7_("°+'_)x('°+'_) (4.43)

whose elements could be expressed in a more detailed form as

w

Ohl

o__
80_

Oh Oh

o__ ... O__&U _ Oh_
002 O0. e O_] a¢_

o__ ... o_ha_ Oh2
OOa O0. e aft1 aB_

: : : : :

Oh"a+"p_ ... Oh"o+'_p_ Oh.o+.2_ Oh,_o+np_

002 O0,, s Off1 Off2

Oh Oh Oh Oh 1

1

... 8hi

,. • Oh2

OD._

Oh.o+?_.

OO.#

(4.44)
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where hi is the ith element of vector h, similarly

OWu] K07, _ " _ K_', u _2" " _ ] (4.45)J

and

=- OOl 002 O0. o OB1 Off2 01-1,,_

With these defined notations, Equation 4.42 could be expressed as a linear

state equation

£_" = _l ¢I'., IV

= ASx + BSu (4.47)

where 2" is an (no + nz) x (no + nz) identity matrix, A G R2(,,o+,,_)×_t,,o+,,z),

and B E T/2('°+'_)xn°.

From Equations 4.34 and 4.47, the controllability matrix of tile lin-

earized system is given by

q2 = [B AB A_B ... A 2('°+''_)-

0 W ¢_I¥= w (e;,

'B]

C,I,,+ e )w
(ffh¢2 + ff_ff'l + tI,_)IV

whose rank serves as an indicator of thc local controllability of the original

nonlinear system in Equation 4.36. Since _1 and O2 are functions of 8, fl,

/}, fl, and u, and W is a function of (/ and fl, the raad¢ of _II relies on the

specific operational point (Xo, uo) around which the system is linearized. In

the following sections, two examples will be presented. The first cxample

is a one-link arm modeled with one lumped lateral deflection, where due to

the specific kinematic structure the vibratory mode is always inaccessible

and uncontrollable. The second example is a two-link arm modeled with one

lumped laterM vibratory mode which turns out to be controllable even in an
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inaccessibleposition. Both examplesare studied by the symbolic program

MACSYMA, and due to computer memory limitations, somesimplifications

arc applicd in order to obtain the final results.

4.4.1 Example 1

The first example model is shown in Figure 4.4 (a), in which (X, I, Z)

is the global coordinate frame, and (X1, I'l, Zl) is the local frame of the ann.

The link has mass m_ mid moment of inertia It. The mass is located at a

distance r fl'om the joint axis, mid the link length is I. A payload is added

to the end of the link, which has mass m2 and moment of inertia I_. The

vibra.tory mode is modeh;d a.t the end of the arm and parallel to Z1 direction.

Then the dynamic equations are described by

(It + I2 + ml, "_ + m212),_ = u

m'23+K¢" = 0 (4.49)

where K is th,' modeled spring stiffness. Letting a = (It + 1,2+ mtr 2 + m21_),

the inverse of the inertial matrix is expressed as

C A2 = 0 A_ (4.50)

which indicates that the 1 x 1 dimensional C matrix is given by C = 0. This

suggests that oscillation /3 always remains inaccessible. Since the derived

dynamic equations are linear and time invariant, they could be expressed in

a state space form as

0

0

0

0

0 1 0

0 0 1

O 0 0

g 0 0
rn2

0

u (4.51)
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and the controllability matrix is

0 1 0 0

0 0 0 0

1- 0 0 0

_ 0 0 0

(4.52)

which, lmssesses only two independent columns so it has a raalk of two. Since

_II does not have a ftdl rmlk, the syst.em is uncontrollable. IIence in this exam-

ph,, the controller loses both controllaMlity and accessibility of the vibratory

lllodc.

4.4.2 Example 2

The second exa.ml)le is depicted in Figure 4.4 (b), which is a two-

link arm lnodeled with one vibratory mode. The first link has a local frame

(.Y_, l"_, Z,), and that of the second link is (X2, t_, Z2). The second link is

oscillating laterally along Z2 direction. Each link lengt.h is indicated in the

figure. For simplMty in analysis, the links arc assumed massless, only the

lmyload is considered to have a ma_s m:_ and a. nlonlent _f inertia I3 aromld

the X._ axis. Then the system dynamics is given by

I" 0_ +f= u2 (4.53)

0
O1"

= (/.)-l(_f) + (io)-,u

= h + lVu (4.54)

in which I* is the generalized inertia matrix which is symbolically derived as

Ia + 'nail 2 + (,n3/2 a - I3)eos2(02) -ma/2sin(02)fl -mfl2cos(02) ]
 in(0 0 l--m3/2 cos(02) 0 hi3
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Z, Z1

m2, 12

_,_e-"- x; IS<z_)
_k

(a): Example I

Y2
Zl

12

X 2

m3,13

13(z2)

(b):

1 1

Y

Example 2 X Figure 4.4: Controllability Models
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and f contains the Coriolis, centrifugal, gravitational, and spring force effects,

and is described by

[ -2(,n3l_ - Ia)cos(O_)sin(02)O,02- ,n312cos(02)t30_ + 2,n3301/J
f = (m3l_ - I3)cos(O2)sin(02)O_ - 2,n312sin(O,)O,3 + m391;cos(02)

-m3flO_ + 2,n31;sin(O_)0102 + I(fl

where g is the gravitational acceleration, and K is tile modeled spring stiff-

ness. Tile inaccessible position of the modeled vibratory mode is determined

fi'om the submatrix C of (1°) -1, which has a symbolic form

1 [,n.]l a cos(0.2) ,n_l_ eos(02)sin(02)fl]C = N

A = (m_Ial_)sin2(02) + (,n_l]fl2)cos2(O._) (4.55)

Apparently, cos(0_) = 0 gives the inaccessible position, i.e., when the second

link is vertical and collinear with the first joint, or 02 = 90 degrees, both

actuator inputs can not access/3. To cheek the local controllability in this

inaccessible position, the nonlinear system defined in Equation 4.54 will be

linearized around an operational state described by

{O, , O_, _, O, , O,_,/), ,_,, u_ } = {O,o, 90°, O, O,o, O,_o,f),,, ,,,o, ,,_o}

where subscript o denotes the constant values of a selected operational state,

and 02 is chosen to be 90 degrees to include the inaccessibility condition. The

linear variational equation 5k = ASx + B6u of the nonlinear system is derived

symbolically around the operational point and the matrices A and B take the

following form

0

0

0

A= 0

0

0

0 0 1 0 O

0 0 O i O

0 0 0 0 1

201o0_o _ O 0 0
I312

m31] I31_ 12 12

__ _,,-Ic -21202o -21201o 0
/3 ma

(4.56)
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0 O

0 0

0 0

B - 1 0 (4.57)

0 0

A controllability matrix _ is formed by using the above .4 and B. Ill this

case, no = 2 mid n o = 1, so • is a 6 x 12 matrix. To check the full rm_k of

_, the determinants of two submatrices of • are derived, which are

dct[B AB A2B] = 20_oU,o (4.58)
344,n3I_12

and

det[B A2B A3BI = 160,o02o (4.59)
334

m3I_ l2 I3 m312

since these determinants call have nonzero values, _ can have a full rank.

Therefore, the nonlinear system is locally controllable around an inaccessible

position. This result indicates that inaccessibility does not necessarily imply

uncontrollability. But as pointed out before, in an inaccessible position the

vibratory mode is governed by nonlinear terms composed of centrifugal, Cori-

olis, gravitational, and spring forces. Without the direct access of the control

input, it is very difficult to dampen the vibrations through the nonlinear term

]'2 and spring force Kfl.





Chapter 5

Controller Design for Compliant Manipulators with

Well-Known System Parameters

In a linear system of equations Ax = y, where A E 7_ ''x'_v , x E Tt TM ,

and y E T_nv, the matrix A assigns a y for a given x. Let A.' C _,,z be the set

of all such x and y C 7_ '_ be the set of corresponding y, then ,¥ is defined

as the domain of A and y is the range of A. If the mapping from X to y

is bijcctive, i.e., one-to-one and Y = T_"_, then an inverse map exists such

that for every element y E _'_y there is a unique solution x E X satisfying

the equation. Since A is generally not a full-rank square matrix, existence

and uniqueness of solution x is not guaranteed for any y. For example, if

n_ > n_, let X ± C X be a subset defined as X ± = {x ± : Az ± = 0; x ± _. A;}

, i.e., X ± is the nullspace of A, then for every element x ° = x + x i, x E .l'

and x L E X ±, Ax ° = y, which means that for a given y the solution is

indecisive. Another example may be given as follows: if n, < n_ and if we

let y.L C T_ n_ denote the complement of Y, then for a given y" = y + y±,

y E Y and y± E Y±, there is no solution for the equation Az = y', which

means that since A has a rank smaller than nu its column space can not span

_'_, hence solution does not exit unless y" is in the column space of A. The

first example is sometimes referred as redundant problem, and the second

example is overdetermined problem. It will be shown in this chapter that

the controller design of compliant manipulators has the nature of solving

112
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an overdetermined problem, but after choosing proper control critcrbt tile

controller design becomes solving a. redundant tn'olflem.

5.1 The Difficulty of Ideal Acceleration Assignment

According to the third chapter results, compliant manipulator sys-

tem dynamics have a common symbolic form

for both distributed and lumped parameter models, in which the first ma-

trix represents the generalized inertia associated with nominal and vibratory

modes, and its inverse is defined in Equation 4.7 as

As = C As (5.2)

Prcmultiplying Equation 5.1 by the inverse itbove, the dynamic equations

becolne

C T,.+[ [ 1
C j ,l (5.3)

Ideally, it is desirable to select a proper u so that the accelerations obtain the

PID state feedback and fcedforward values defined by the following relations.

where

(5.5)

in which O_ and _ represent the desired states, and I'[,_i, I(pi, and Kti, i =

0, fl, are separately the stable velocity, position, and integral gains with
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appropriate dimensions. Generally, 0,. is predcfincd by given task, amt/3r and

its time derivatives are chosen to be zero in order to eliminate vil_rations.

Additiona.lly, tile feedback gain matrices I(,,i, I(.pi, mid I(li a,l'C diugoni_l which

decouple Equation 5.5. If tile accelertttion assignment is achieved then the

conxbination of Equations 5.4 and 5.5 produces

- _,.)- u_(e- e,)- <,o(e- e,)+xc,o{/(e - o,),_,}=(a 0

- a.)- - - =0 i 0)(a

which indicates that by choosing stable feedback ga.ins nominal joints will

track the given task trace, i.e., 8 --+ ,9_, and'structural oscilla.tio,_ will be

removed at the same time, i.e.,/_ --+ p_ = 0. However in Equation 5.3, both

acceleration and nonlinear terms in the left-hand side of the equation are in

TC'0+'_e space, but tile control spttce of u is composed by the no cohmm vectors

of [Ar CT] T which covers only a. portion of "Pv''0+''_'. So f_,r a. given desired

acceleration [u_' aT] T, its sum with the second nonlinear tctnt in Equation 5.3

might not reside in tile control space of u, which means l lint I)y defining

)Y--" u2 + C f_+ A2 ('/)-t-I([:O (5.7)

A'=[ A']C (5.8)

and setting x - u, finding an ideal acceleration assigmncnt u is equivalent to

solving an ovcrdetermined equation Ax = g. O1)vi()_lsly, u soluticm x exists

only when y is in the range of A, which is generally difficult to verify for a

moving robot. Therefore, direct acceleration assignment is not practicM for

the control of compliant mmlipulators due to the dimensional mismatch be-

tween the number of modeled degrees of freedom and the available actuators.

By contrast, in the control of rigid manipulators where structural compliance
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is neglected, every joint, or degree of freedom, is accompanied by _m actu-

ator, so direct acceleration assignment is possible after nonlinear compen-

sation of Coriolis, centrifugaJ, and gravitational forces. Unfortunately, such

nonlinear compensation techniques can not be extended directly to compliant

maSfilmlators where additional vibratory modes are added to system motion

description, I-h,m'e, dimeasional misnmtch makes the control of compliaut

manipulators a difficult and therefore challenging task.

5.2 The Theorems of the Lyapunov's Second Method

Since direct acceleration assignment is not applicable in the control

of compliant mmfipulators, certain stability criteria must be adopted to fa-

cilitate the controller design. The stability criteria chosen in the following

controller designs are derived by Lyapunov, which arc stated in the following

theorems [LmMau, 1979].

Theorem 5.1 (Lyapunov) Con_ider th,c free dynamic system

._= f(_, t) (5.9)

wh.erc f(O, t) = O_for all t. If there exit,, a real sca,la.r functi,,n V(£, t) "u,ith

continuous first partial derivatives with re.,spcct to :£ and t ._o,ch, that

_. v(o__,t)= o fo_ all t

2. v(_,t) _ _(11_11)> 0 for all m¢ O,mC W', a.,_df,,,' ,,ZZt, ,0h_.r_.(.) _.,

a real, continuous, nondecreasin.q scalar function such, that a(O) = 0

s. v(_, t) _ _ as Ilxll_ o_ ]or atZt

4. 9 = ?TaV(x,t)= _V+° (gradV)Tf(_,t) -< -'r(llmll) < 0 _h_e "r(.) is a

real, continuous, scalar function such that 7(0) = 0
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then the equilibrium state x____,= 0 is 9lobaUy asymptotically stable, and V(x, t)

is a Lyapunov function for this system.

Corollary 5.1

system

The equilibrium state x.___= 0__of the autonomous dynamic

is globally asymptotically stable if there exists a real scalar f_tnction V(x) with

continuous first partial derivatives wit.h respect to _ such that

I, v(o) = o

_. v(g) > o for all _ # O,_ _ 7_"

S. V(x) _ _ as Ilzll_

4. '2 = _V(_) < 0 for all _ # 0, ._e _"

Corollary 5.2 In the above Corollary, condition _ may be replaced by

4.1 9(_) < 0 for all _ # o, _ e _"

where _¢(t;_,to) i_ a solution of Equation 5.9 and __(t0;_,to)= _)

Finally, for linear time-invariant free dynamic syst, em, Lyal)UmW provides th('

following theorem giving the necessary and sufficient t:(m(litions for globally

asymptotically stability.

Theoreln 5.2 The equilibrium state x___= 0__of a linear time-invariant free

dynamic system

__ = Az_ (5.10)
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i8 (globally) a,_ymptotically stable if and only if given any positive definite

matrix Q there exists a symmetric positive definite matrix P which i_ the

unique solution of the matrix equation

ATp + PA = -Q

and V = ,r'rI)x is a Lyapunov frtnction for the ,,y$tem i7_, EquatioTt 5. i0.

In applying tile Lyapunov's second method, a continuous, positiw:

definite scahu" fltnction, or the Lyapunov flmction, is defined first. This posi-

tive Lyapunov fimction generally represents a distemce, or error, between an

instaalt state and the desired state. Then by formulating the system con-

troller properly, the Lyapunov function produces a negative rate as long as it

remains a positive value, which means that the distance and hence the state

error is reduced continuously until a zero error is met. Since this method

studies stability problem in "Rl space, it is very useful t_ solve multi-degree-

of-freedom control problems like the control of co,npliant, x,mnilmlators. It

will be shown later that by using the Lyapunov's second m_:th_d the control

design becomes solving the redundant problem instead of the overdeter,nined

problem in the direct acceleration assignment.

Several controller structures will be introduced in the following sec-

tions. Before presenting these control algorithms, it should be noticed that to

maintain generality of the results the nonlinear nature of system dynamics is

considered in the design process. No linearization or ignoring nonlinear term

is assumed to simplify the control design problem. However, two t_ssump-

tions are used in building the following controllers, which are: (1) system

parameters including payload are well-known, but in later example simula-

tions payload uncertainty are added to test controller robustness, and (2) all
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nominal and vibrational displacement and velocity states are available on-

line. The first assumption is generally true for a well calibrated system. As

for the second assumption, robot joint position and velocity could be read

from attached resolver and tachometersdirectly, and modal amplitudes and

velocities could be measuredand reconstructed from strain-gauge readings.

Thcrefore the secondassumption is technically feasible. Examples of on-line

measurementof vibratory statesfor tlle motion control of compliant _rn: have

been reported by [Hasting and Book, 1986] and [Cttnnon and Schmitz, I984].

5.3 Orthogonal Projection Method

The first controller is designed by the orthogonaI projection method.

As mentioned in thc direct accelcration assignment, finding a proper input to

produce the ideal acceleration response is solving a linear equation described

by Ax = y, whcrc A has more rows than columns. If A has a full column

rm:k then (ATA) -1 exists, and there is a left-inverse (ATA)-IA T such that

x - (ATA)-IA'ry which represents ttn approximated solution with minimum

error

IlY - Axll,_, = I1(z- A(ATA) -1AT)yll

where 2" is an identity matrix and A(ATA)-IA T is a projection matrix from

y to the column space of A. Because

AT(y -- Ax) = 0

the solution x = (ATA)-IATy could be considered geometrically as an or-

thogonal projection of y on the column space of A. Since t,he orthogonal

projection solution x can not generate the exact y, it could not be used alone

to construct the input command. However, the orthogonal projection matrix
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(ATA)-IA T is a linear map from T/"o+no space to _,,0 space, which allows us

to traasfer control design from 7¢-0 space to 7_',e+,,_ space where the ideal ac-

celeration [u T, u_'] "r resides. After constructing the controller in 7"4''_+'', space,

the result is projected back to 7_ "0 space to obtain the final input connnand.

Therefore, orthogonal projection will be used as a starting point in the fol-

lowing design process. Since the orthogonal projection does not guarant('('

the ideal acceleration assignment, the Lyapunov's second method will be em-

ployed as the criteria to build a stable controller in 7"4,,0+,,_ space. First, the

dynamic equations defined in Equation 5.3 are rewritten as

u A_ ](.h+

then by selecting a composite input command

u = .fi + u_ (5.12)

Equation 5.11 is reduced to

Cw

= C ua + 71

where 71 is defined as

[cT]7'=- A2 (f2+Kfl)

Since submatrix A, has full rank,

+ Kfl)

then the matrix c_ defined by

= ArAI -_ CTC

(5.13)

(5.14)
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is invertible. So, it is possible to choose a set of input [_tT uT] T defined in

7Z"e+",' space that produces a u3 in 7_"e by the following rclations

[A'I)' [],,3 = ATc T] C [A'_'C7"1 "'
U5

By substituting the above u3 into Equation 5.13, the dynmnic equations be-

come

with

[A, ]-_" C u 5

= B2 B3 us

+ 71

(5.17)

B1 = Ala-lA T

B2 = Ca_-_A_"

B3 = Ca-'C T

As mentioned before, the orthogonal projection matrix

_-'[A_,"C_]

(5.18)

us could be further defined as

(5.19)

converts the control input from an no vector, u3, to an (no + nt_) vector ,

[u_ uT] T. After designing the control input [,,T uTIT, the actual input u3

is generated by Equation 5.16. In the above definitions, Bl is an invertible

matrix for A1 has full rank, and B3 is a symmetric matrix. Provided that C

has full row rank then B3 is also invertible. In case that B_ -1 exists, u4 mad
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where u, and u2 are tile desired accelerations given in Equation 5.5, and u6

and u7 will be defin('d later by the Lyapunov's second method. With theso

new u4 and us, Equation 5.17 becomes

u, + u6 + B2B{'(u, +,,6) +'7, (5.20)
/_ = U2 U7

where the first term in the right-hand side is the desired acceleration, the

second term is the input vector to be assigned, and the rest represent nonlinear

disturbance to the above control system. Equation 5.20 could be converted

into error-driven system dynamics by the following definitions. Let

[0-0r ]el= 5 5r

_3 = --el

; e2 _ gl

Ci

; C = e2

ea

E 7"_a('l°+'t_)

(5.21)

be the error states and

0 Kva
C=T_ (n°+no)×("°+''¢) (5.22)

0 K_

i(i = [ I(Io 0 ]0 K;_

E 7_ ("°+nt_)x('_°+È_)

C _(,_o+,,o)×(no+,,_)

(5.23)

(5.2,1)

be the new grouped gain matrices, then Equation 5.20 could be transformed

into error-driven system dynamic equations

= Ae + Bw (5.25)

with

I 0 2" 0 ]
A = Ifp K v KI E R 3(no+n_)xa(n°+n¢) (5.26)

-Z 0 0
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I°lB= z (5.27)
0

and

w = + (5.28)
u_ B2B_I(Ul + u_) +'71

where 2" is an (no + nz) x (no + nz) identity matrix. For constant feedback

gain matrices I(p, Kv, and KI, Equation 5.25 is a linear timc-invariant system

with disturbance w. So, a quadratic form Lyapunov function is selected as

V = eTPe E 7_' (5.29)

whose derivative could be derived from Equntion 5.25 as

_, --- _Tpe + eTp_

= eT(ATp + PA)e + 2eTpBw

= -eTQe + 2eTpBw (5.30)

where P and Q are positive definite matrices with P and Q E _3(,,e+,,_}×a(,_0+,_).

Also by Theorem 5.2, for a stable matrix A, P and Q satisfy the following

relation

drp + PA = -Q (5.31)

which is often called the Lyapunov matrix equation. Notice that A is _ stable

matrix whose eigenvalues are decided by the gain matrices in Equation 5.26.

In Equation 5.30, V is composed of a negative quadratic term and a nonlinear

disturbance w. Recalling from the definition of w in Equation 5.28 that the

control input u6 and u7 in w axe left to be decided. Therefore, they could be

selected such that

eTpBw < 0 (5.32)
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is satisficd. If Equation 5.32 is accomplished then V > 0 and lY < 0, for M1

e -¢ 0. Conscquently, according to Corollary 5.1, e ---* 0 which implies that

0 ---* 0r and /3 ---, /3r = 0. Since one of the sufficient conditions for 1}" < 0

is eTpBw = O, u6 and u, will be solvcd based on this critcrion. First by

dividing P into nine (no + no) x (no + n_) submatrices

p =

Pl /'_ &
_ _ P_ (5.33)

and following the previous definitions that eT = [c_' e_' c_'] and B = [0 Z O]r,

then

erPB = 4p_+ ,,_r_+ qr/

"°J [,d',d] (5.34)

with 'It E 7"_TM and '12 C 7_w_. By t,h('se new notations, the scalar equation

eTpBw = 0 could be expresscd by

eT p13w ' T T -1= (,T + ,d'zh_,'),,_ + (,_ + ,, zJ_n:, ).,,,

+ (,ll'B_'Bylu, + ,l_'B2B?'u, + ['11' '1T]7,)

d_J q.'ru_ + _2

= 0 E'R) (5.35)

with

and

• _ = [(,_ + ,ffB_Br')Off + ,_TB_B;')]

1t8 = E
U7

(5.36)

(5.37)

72 = ('IT BT Ba'u2 + 7ITB2Bi lu, + ['l T r/T]7') (5.38)
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SinceEquation 5.35is a scalar equation, and us is an (no + n_) vector, finding

a us satisfying Equation 5.35 is solving a redundant p,'ol)len_, tte,'c a solution

with a minimum norm IlUsll value is selected, which is

(5.30)us = _--_

provided that _IJ¢ 0. After solving us, the controlle," design is accomplished.

Now, V > 0 and I)" < 0, for all e _ 0, and according to the Lyapunov

theory, the crror state converges asymptotically to null state. Consequently,

both nominal trajectory tracking and vibration elimination are retained. It

should be noticed that by using the Lyapunov stability criteria, compliant

mmlipulator control design is transformed from an ovcrdetermined to a re-

dundant problem. To construct the final command input u, the us defined

in Equations 5.37 and 5.39 and the ideal accelerations ul and u_ given in

Equation 5.5 are substituted into Equation 5.19 to produce u4 and us which

arc then projected back to "R.TM space to generate ua by Equation 5.16. The

final command input u is the sum of u3 and nonlinear ter,n fl as stated in

Equation 5.12. Then according to thc above analyses, the input u will ful-

fill the Lyapunov stability criterion and hence stabilize the nominal tracking

,notion and structural oscillations.

5.4 Restrictions of the Projection Method

In developing the control law by the projection method, two analytic

assumptions are proposed. First, it is assumed that

B3 = Crx-'C r

is invertible,which means that C must maintain fullrow rank during the

control process. Since C is an (n_ x no) matrix, to have a full row rank
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implies that nz _< no. So tile projection method is restricted to the _'a._c that

the number of modeled vibratory modes is not greater than that of itominal

joints. Also, inaccessible vibratory modes must be avoided during operation,

since a row or rows of zero in C will make B3 not invertible.

Another assumption applied on Equation 5.39 is that _ ¢: 0. Ac-

cording to Equation 5.35, when _IJ = 0, the derivative of the Lyapunov flmc-

tion in Equation 5.30 becomes

_/= -cTQc + 23'2 (5.40)

where 3'2 is given by Equation 5.38. In that case, I;" is affected by the nature

of 72. If 3`2 remains negative thcn I_" < 0 and the stability proof remains valid.

Otherwise, I "/l)ecomcs positive when

27: > eTQe > 0 (5.41)

which means that when e is inside a spherical ball, e'rQe, bounded by 272 , the

asymptotical convergence of the error state is not ensured. Geometrically, an

error state outside the spherical ball will be driven toward the ball continu-

ously by control input, once the error state enters the ball it will be confined

inside the ball but the destination is unccrtahL Obviously, by reducing the

size of the spherical ball, the uncertain error state will set closer to zero. In

the following, we will discuss how to reduce the size of uncertain spherical

ball. Recalling that the definition of _'2 is given by

3`_ = ('ll'B_'B_'u2 + 'lr2 B_B; ''', + [7717''hT]3`,)

where B1, B2, Ba, and "/1 are system properties which can not be manipulated

directly during a task, and ul and u2 are the ideal accelerations which can
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be reduced only by using small gains. Hence, tile major reduction must be

accomplishedby _11and r/_.By Equation 5.34

where ei, i E {1, 2, 3}, are the on-line state errors, so llx and _12can be reduced

by choosing small P2, P4, and Ps. However, positive definite matrix P is

generally solved numerically from the Lyaptmov matrix equation

ATp + PA = -Q

for a given stable matrix A and a positive definite matrix Q. So the selection

of P is not arbitrary because the Lyapunov matrix equation relationship must

be maintained. In the next section, an explicit solution of P for a specific

set of A and Q will be presented. These results will show how to obtain a

desirable P structure from the adjustment of Q values. Hence a small P could

be constructed in terms of Q to reduce the uncertain ball in the above stability

analyses. Case studies of using thc orthogonal projection method to control

a six-link manipulator modeled with four joint or four link complimlces are

reported in [Tosunoglu, Lin, and Tesar, 1990, a].

5.5 Solution of the Lyapunov Matrix Equation

According to Theorem 5.2, for a stable matrix A and a given positive

definite matrix Q, there exits a unique positive dcfinite matrix P sucll that

ATp + PA = -Q

Hence in general control design, P is not chosen directly but solved from the

Lyapunov matrix equation for a given pair of A and Q. Generally, numerical

methods are used to solve the Lyapunov matrix equation. However, Q is
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practically chosento be diagonal for high dimensional systems,and the gain

matrices I(_,, K,,, and KI arc usually diagonal to dccouple the final state

equations. For these particular A and Q matrices, P can I)e solved explicitly

in terms of the submatrices of A and Q. In Equation 5.26, A is given as

0 I 0

A = If v K,, I( I _. ,'f'_3(,,e+n_lx3(no+ng)

-.I 0 0

and in Equation 5.33, P is divided evenly into nine (no + n_) x (no + n_)

p ,__

submatrices

For a diagonal Q defined as

P1 /'2 /'3

QI 0 0 ]
Q= 0 Q._ 0 (5.42)

0 0 Q3

where Qi, i c {1,2, 3}, are (no + n0) x (no + no) diagonal subnmtrices, the

submatrices of P have the following explicit solutions:

2P_ = (K_ - K.)DQ, + (I(_ - K,,K,)DQ_ + (I- Ka,,K[')DQ3

21½ = -K.DQ_ + KIDQ2 + K_K}-_DQ3

2P3 - I(IDQ, + l(_,IftVQ_ + I(_,I(_I(['DQ3

2P4 = DQ, - IfpDQ2 - I(.,_I(.[_DQ3

2/"5 = -K[1Qa

2P6 - IQIfIDQ, + If]DQ.2 + (IC_ + IC_, - I(;Z,K_ICf')DQ3 (5.43)

with

D = (K_K_ - iQ)-t (5.44)

This solution is obtained by using the facts that diagonal matrices remain

commutative under multiplication, and P is thc unique solution of the Lya-

punov matrix equation. Notice that P;, i E {1,2,3,4,5,6}, are diagonal
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matriceBand linear functions of Q1, Q2, _md Q3. Since A is a stable matrix,

and Kp, K., and It'1 are diagonal matrices, it could be shown by the Routh-

Hurwitz criterion that (lfplC,, - Kz) > 0 which automatically gu_antees the

existence of D in Equation 5.44. In the above explicit solutions, P is a linear

function of Qi for a given A; this relationship allows a direct regulation of Q

values in order to affect the structure of P. For example, in the orthogonal

projection method, in order to reduce the _ll and rh defined in Equation 5.34,

small Qt, Q2, and Q3 can be employed to produce small P2,/94, and/95 ac-

cording to Equation 15.43 results. Application of the above explicit 19 will be

demonstrated later in example simulations.

5.6 Modified Controller Design

In the orthogonal projection method, the control law requires the

computatioa of .Bt, 1t2, B3, B{ 1, and //_-l, which creates burden on real-

time operation. Also the controller is limited to compliant systems with

_.o >_ 7_a. To remove such restrictions, new control algorithms are proposed

in this section. The system dynamics in Equation 5.11 are given here again

Now, the composite input u is defined as

u = fl + A1 -l _L1+ C'u2 + _L3 (5.46)

where fl represents the feedforward component, ul and u2 are the ideal ac-

celerations given in Equation 5.5, and ira will be defined in stability analysis.

Since At has full rank, its inverse exists and is introduced in the above equa-

tion. The (no x n#)-matrix C* in Equation 5.46 represents a general matrix
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whoseexact structure is casedependentand will be discussedbelow. Substi-

tuting the compositeu into Equation 5,45 results in the familiar form

/_ = u2 C u3+3` (5.47)

where

[ o7 = (CC'-Z')u2 + CA-F'ul - A2 (f.2 + K/3) (5.48)

and 2' E 7_,,a×,,z is an idcntity matrix. Depending on the dimension of C,

diffcrent C* could bc selected to simplify the structure of 7. Since C is an

(7_z × 77.0) matrix, when no >_ 7_, i.e., the munber of modeled vibratory modes

is not greater than the number of inputs, ancl C has a row rmlk of r_._ and no

imtcccssible vibrcttory mode occurs, then thc right-inverse of C, C +, exists.

Hence C* is selected as C" = C +, this selection causes the 7 expression in

Equation 5.48 to become

3` = CAT_._, A_ (f_ + Ii/_) (5.49)

Otherwise, when the right-inverse C + does not exit due to inaccessibility

problems or n_ > no, or the computation of C + requires an unacceptable

overhead in controller implementation, a simple way to reduce 3` is to select

a null matrix C ° = 0 so that 3` becomes

Both simplified 7 structures will be used in the later example studies. How-

ever, despite various possible 3' forms introduced above, the controller will be

designed for the general form in Equation 5.47. Following the error-state def-

initions in Equation 5.21 and the stable matrix formulation in Equation 5.26,
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the error-driven system dynamic equations for Equation 5.47 are expressed

by

where the control component ua becomes input of the error-driven system.

Again, the Lyapunov function candidate V is selected in a quadratic form

V = erpe E 7C1 (5.52)

whose time derivative together with Equation 5.51 yields

where P and Q ere 3(no + no) x 3(,_0 + n0) positive definite matrices end

Arp + PA - -Q (5.54)

Although there are many possible selections of ua to cause l "I < 0 for all e ¢ 0,

here u3 is selected to generate I'r = -erQc. That is, letting 71 and t L denote

the following quantities

7y - [AT C_]Z_7'PeE TV'e

# = eTpB_ 6 T_1 (5.55)

ua is solved from the scala" equtttion

_lTu3 + tL = 0 (5.56)

Since ua is an no vector, thc above scala' equation is a redundant problem

hence more than one solution exist. Therefore additional criterion could be

introduced to assist the selection of u3. Two such criteria are presented here.

First, Equation 5.47 is restated as follows

§ ul ] u3 "y_
u2 C j + )
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Since the first term in the right-hand side is the desired acceleration, by

minimizing the disturbance caused by the last two terms, the acceleration

response will have the bcst approximation to the ideal result. Hence, the

problem becomes finding an optimal ua that minimizes

IE[ +
while u3 is subject to the constraint of Equation 5.56. The optimal solution

to this problem is given by

u3 = -Z {[AT CT]7 + P- 7'TZ[AT C'r]_,,}rlTZ,, (5.58)

where

c (5.59)

Due to the full rank of A1, Z is positive definite and hence nonsingular.

Apparently, u3 in this design demands some computational effort which makes

it unattractive for reM-time iml)lemcntation. Therefore, another criterion is

proposed, whose result will be used in the following example studies. Now, the

object is to minimize ]]u3[] which is subject to the Equation 5.56 constraint,

and the solution is simply given by

u3 = - 71 (5.60)

where _/is assum(,d to be nonzero. The situations when a mill vector 7/occurs

fox" c ¢ 0 will be discussed later. Fox" the designed ua values, V > 0 and I}" < 0

hohl for every e ¢ 0, which means that asymptotic stability of error state is

ensured and consequently tracking of desired trajectories and elimination of

oscillations are obtained since the error states are defined as the difference

between plaslt and reference values. Notice that the modified control algo-

rithms have much simpler structures than that of the orthogonal projection

method, therefore, the former control laws demand less computational effort.
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5.7 Effect of Matrix P on System Response

In the orthogonal projection method, a P matrix with relatively

small magnitude entries is suggested to improve system stability. Here, the

effect of P on controller performance will be analyzed. To investigate sys-

tem response, the u3 designed in Equation 5.60 is substituted back to Equa-

tion 5.47 which results in a compact form

with

]_ "-- it 2

S - 1 (Rvvr)
vrRv

v = BTpe

(5.61)

R = [A T cT]T[A T C T] (5.62)

where 3' is defined in Equation 5.48 and 2" is an (no + nz) × (n0 + no) iden-

tity matrix. Note that S is idcmpotent; that is, S 2 - S, and (2-- S) is also

idcmpotcnt. However, since S is not a symmetric matrix, (2-- S) is not a

projection matrix. Another property is that v T is a left nullvector of (Z - S),

i.e., vT(Z -- S) = 0, which is a result of Equation 5.56. In Equation 5.61,

when (2"- S)3' approaches to zero, the controlled system approaches the ideal

acceleration. According to Equation 5.62, P is a constituent of S, so the

selection of P can affect the vahte of (Z - S)7; hence, improve system motion

response. Furthermore, recalling the definition of B as B = [0 2"0] T, v in

Equation 5.62 takes on the form v = P2e_ + P4e2 + Pse3, which indicates

that only P2, /°4, and P5 submatrices are involved in the computation of v,

therefore, only these submatrices need to be monitored to affect S and hence

control response. Once the preferable P2, P4, and P5 structures are decided,
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they could begeneratedby adjusting the Q1, Q2, and Qa submatricc._ defined

in Equation 5.43. Unfortunately, tile nonlinear nature of Equation 5.62 hin-

ders tile effort of finding a constant P matrix analytically that minimizes the

disturbance (Z - S)7. However, according to our case study results, a large

difference between tile first no and the next n o diagonal elements in P2, P4,

and Ps subnm.trices will enhance controller performance. This characteristic

behavior will be demonstrated later in the case studies, lint an explana.tion is

given here. Since tllev in Equation 5.62 is defined as v = Pael + P4e2 + P._ea,

the first no diagonal elements of submatriccs P_, P4, and Ps are the gains of

nominal state errors in el, ca, and Ca, while the next n_ diagonal elements

are the gains of vibratory state errors. A large difference l)ctween these gain

elements will emphasize the errors of nominal states but suppress the effect

of vibratory state errors. Since the nominM states are smooth and compar-

atively slow-moving in contrast to tee high frequency oscillations, the large

difference arrangement on the P submatrices will reduce the high frequency

vibra.tiona.1 disturbance on S and consequently produce a better system r(,-

sl)OllSe.

5.8 Effect of Matrix P on System Stability

One assumption used in the above derivation of Lyapunov stability

is that 7lis not anullvcctorfor alle _0. IfT/ = 0 for some e _ 0 then by

Equations 5.53 and 5.55 the asymptotical stability is mlcertain when

2# > e'rQe > 0 (5.63)

To choose a matrix P to improve the stability region, the structure of q will

be analyzed f,'om the inverse identity defined in Equation 4.7 which gives C
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as

C

= (5.64)

A substitution of the above C expression into the ,7 defined in Equation 5.55

results in

0 = [ATCrlBrPe = [A T (--AT_TA_T)] v

= AT[z (5.65)

where 2" is an (He x no) identity matrix. In the above equation, A, is a non-

singular matrix, and [2" (-ErA_T)] E 7__°×("e+"a) which has a nullity of n B.

Therefore, ,7 becomes zero when v is in the null space of [2" (--_TA_'T)]. How-

ever, due to the geometric dependence of A2 and E on 0 and fl, identification

of this null space is a demanding task especially for a moving mmlipulator.

Hence, a qualitative analysis is given to this problem. As the submatriccs

of a generalized inertia matrix, _ and A_ generally have a similar order of

magnitude, therefore, the submatrix (--_TA2"T) has entries with a small or-

der of magnitude perhaps around 1, which means that [2" (--_TA_'T)] could

be roughly represented by

1 ... O 5=1 ... 5=1

0 ... 1 5=1 ... 5=1

(5.66)

so when the entries of (n0+na)-vector v has a large difference between the first

no and the last na elements, v will be away from the null space of [2"(--_TA2"T)]

hence [2"(--ETA_T)]v ¢ O, which further implies that ,7 _ 0 for all e _- 0. This

result supports the assumption used in the stability analysis. Recalling that

v = P2el + P4e2 + Pbe3, in order to create a v with a large difference between
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the first no and the last ,_Z elements, P2, P4, and Ps could be constructed with

a relatively large difference between the first ne and thc next no diagonal ele-

ments. This provides us a guide on the selection of P values. Coincidentally,

such P structures are also suggested to enhance the controller performance in

the last section. Of course, the above anMyses only give a qualitative solution

to _tvoid a null _/ which is also affected by the on-line error-st_tte values.

5.9 Numerical Simulations on a Six-Link Manipulator

In order to test controller performance, numerical simulations are

conducted on three flcxible manipulators which have the same kinematic

structure but different compliant components. All three c_es use the model

of a six-degree-of-freedom Cincinnati Milacron T3-776 industrial robot shown

in Figure 5.1. The first example considers six joint compliances of the robot,

the sccond and the third models contain three compliant joints and two flex-

ible links. The compliant joints modeled in the second example are the first

three joints, also the forearm and upper arm are considere(l flexible whose

la,ter_d deflections are approximated by two orthogona.1 translational springs

lc)cated at the end of each link. To t('st the generality of th(, proposed con-

troller, a third example is added to the case studies. The third model h_s

the same number of vibratory modes as the second example except that the

wrist is compliant instead of the first, three joints. Figure 5.2 shows the slwi_ g

model depicting the joint compliance modeled in the simulations. Figure 5.3

presents the orthogonal linear springs used in approximating the lateral de-

flections of each flexible link. The spring stiffnesses used in the case studies

are arbitrarily chosen for illustration purposes, however, they are approxi-

xnately 2 to 5 times softer than the actual values measured by [Sklar, 1988]
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and [Behi, 1985]. The system parameters of the T3-776 robot are listed in

the following tables.

Link 1

Table 5.1 T3-776 Kinematic Parameters

Link Length (m)

(x, y, z)
(0, o, 0.8128)

Center of Mass (m)

(x, y, z)
(0, o,-0.4318)

Offset

Angle ( deg)

Link 2 '1.1776, 0, 0) (0.508,-0.0254, 0) 90

Link 3 (0, 0, 0) (0.1016,-0.1778, 0 0

Link 4 (0, 0, 1.397 (0, 0,-0.508) 90

Link 5 (0, 0, 0) (0, 0, 0) -60

Link 6 (0, 0, 0.1524) (0, 0,-0.1016) 60

Payload (0, 0, 0.0254

Table 5.2 T3-776 Inertial Parameters

Mass Moment of Inertia ( kg.m _)

(kg) (I_, I_, Izz)

Link 1 317.5 (0, 0, 29.3)

Link 2 680.4 (5.9, 52.7, 43.9)

Link 3 453.6 49.7, 7.61, 49.7)

Link 4 68 0.59, 0.59, 0.35)

Link 5 36.3 0.23, 0.23, 0.06)

Link 6 27.2 (0.12, 0.12, 0.06)

Payload 91. (0.06, 0.06, 0.06)

Table 5.3 T3-776 Actuator Parameters

Joint

Inertia 10 -3. kg . m s)

Damping (N . ml(rad/s))

Resistance (ohm)

Torque Constant (volt /(tad�s))

Gear ratio

Back emf Const. (N. re�amp)

1 2 3 4 5 6

4.2 2.1 2.1 1.3 1.3 0.8

0.4 0.4 0.3 0.4 0.3 0.3

0.8 0.8 0.8 0.8 0.8 0.8

20 20 14 11 8 8

100 100 100 80 30 i0

0.5 0.5 0.4 0.3 0.3 0.2

In these case studies, the numerical integration step is selected as 0.1 msec,

a larger step has been attempted but was abandoned due to numerical insta-

bility.
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5.9.1 Case 1: Six Compliant Joints

Figure 5.4 illustrates the six-link robot used in the first example

where 31,'",86 denote local joint deflections. In this example, each joint

compliance is represented by a constant torsional spring acting across the joint

as sketched in Figure 5.2. Torsional springs used in this example axe assumed

massless, therefore, each nominal joint 0i and the accompanying vibratory

mode _i, i E {1, 2,-.., 6}, is subjected to the same structural inertial effect.

This means that the submatrices of the generalized inertia in Equations 3.48

have the same values, that is,

A2 = E_= _z = At (5.67)

Substitution of this particular property and A1 = A_ + J into the inverse

identity cited below

:[ (A1 - ETA2-1_) -1

-A;_ (A1 - _TA_)

produces

-!
-- (A1- _TA21_])-I _"_TA21 ]

A1 = -C r = -C = j-1

A2 = (i_)-' + J-'

where J is the diagonal actuator inertia matrix defined in Equation 3.56 and

whose values axe given in Table 5.3. Since in this case ne = n o = 6 and

joint oscillations always remain accessible as discussed in the last chapter,

the right-inverse of C exists and is simply given by C + = -J. The structure

of 3' in Equation 5.49 here becomes

-y= - (Ai)_i + j_, + (5.68)
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The resultant control input in Equation 5.46 takes on the following expression

u = fl + Jul- Ju2 +u3 (5.69)

where ul and u2 are the ideal accelerations given in Equation 5.5, and the ua

defined in Equation 5.60 is used in the above controller. The above results

are valid for any n-link robot modeled with n compliant joints. Notice form

Equation 5.67 that without adding the actuator inertia J the generalized

inertial matrix defined in Equation 3.48 is positive semidefinite in this model.

For illustration purposes, the stiffness matrix for the six compliant

joints are chosen as

K = diag[452000 339000 226000 (8500)3] Nm/rad

where (-)j represents a diagonal entry repeating consecutively j times, and the

six diagonal elements correspond to the stiffness values of joints 1 through 6.

In this example, eigenvalues (-3-6- 7) are assigned to the ideal nominal and

vibratory mode accelerations, which produce diagonal feedback gain matrices

Kp = [(-81),2] K_ = [(-16),2] Kt = [(126),_]

where the first six diagonal elements are associated with nominal motion

and the last six diagonal elements are with vibrational modes. The robot is

controlled to follow nominal trajectories defined by

o,(t, tj) = a0f(t, ts) +
t 5 t 4 t 3

I(t,t_) 6re --+ --- 15t} l°t} (5.70)

where/(t, tl) is a normalized fifth-order polynomial with/(O, tl) = ](O, tl) =

](O,t/) = ](tl,ty) = f(tl, tf) = 0 and f(ty,tl) = 1, in which t� is the
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termination time for referencemotion. In the above equation, A0 is the

amount of joint movement, and 0T0 is the starting position of reference trac_'.

The reference trajectory is chosen to have smooth start and stops in order

to avoid shocks that might trigger structural resonance. In the simulation,

actual joints will start from a position 00 distinct from the desired initial

0r0. This difference is deliberately created to test the tracking capability of

the designed controller. The trajectory parameters used in this example are

tabulated in the next table.

Table 5.4 Case 1 Nominal Trajectory Parameters

ti(sec ) A_(deg)

Joint 1 8 50

joint 2 8 40

Joint 3 8 -40

Joint 4 8 40

Joint 5 8 50

Joint 6 8 20

0 -10 -10

35 30 -5

-55 -45 10

0 -5 -5

0 -5 -5

0 -5 -5

Besides the initial position errors, a discrepancy in payload description is

deliberately introduced to test robustness of the controller to parameter vari-

ations. The controller presumes a payload of 68 kg while the system actually

carries a 91 kg payload which represents a 30 % error.

In order to avoid a null 77 vector for c _ 0 as discussed in the

previous section, P needs to have a relatively high difference between the

part associated with nominal joints and vibrational modes. Accordingly, the

Q values selected for this case are

Q1 = [(100000)0 (200)6] Q2 = [(1000)6 (2)6] Qa = [(100000)6 (100)6]

and for the above given feedback gain matrices this selection generates sig-

nificantly different P values for nominal and vibratory modes, which are

P1 = [(19499)6 (37.57)6] P2 = [(824.4)6 (1.56)6] P3 = [(-16779)6 (-26.52)6]

P4 = [(82.78)6 (.16)6] P5 = [(-396.8)6 (-.40)6] P6 = [(136022)6 (299)6]
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For these selected parameters, a simulation is conducted and the results a r_"

displayed in the following figures. Figures 5.5(a) to 5.5(f) give the, _ctu_d

and reference joint displacements. Note that an initial error separates these

tu, o traces in each figure. Figures 5.5(g) to 5.5(1) display the joint deflections

of the controlled system, while Figures 5.5(m) to 5.5(r) show input voltages

for each actuator. These results indicate that nominal displacements show

asymptotically stable path tracking capability while residual vibrations set-

tle to static deflection values. In Figure 5.5(n), the high voltage surge at

the starting point is due to the sudden release of the system, which might

physically exceed actuator saturation voltage values. In order to study this

problem, the same simulation is repeated with a +50 volt bound on each

actuator. The results are presented in Figures 5.6(a) to 5.6(r). A comparison

of both simulation results suggests that the system response remains almost

identical, which implies that for this simulation, controller performance is

riot sensitive to voltage saturation. Note that in Figures 5.5(m) to 5.5(r)

and Figures 5.6(m) to 5.6(r) the high frequency, small magnitude vibrations

in control voltages at steady state are to counteract spring torques due to

residual oscillations which are considerably small as shown in Figures 5.5(g)

to 5.5(1) and Figures 5.6(g) to 5.6(1). Actually, such residual oscillations

will quite possibly be dissipated by structural damping not included in the

dynamic model.
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5.9.2 Case 2: Three Joint and Four Link Compliances

Figure 5.7 shows the model of the second example manipulator

whose first three joints are compliant and modeled by the torsional spring

depicted in Figure 5.2. Besides the joint compliances, the forearm and upper

arm are modeled as flexible links whose flexibilities are approximated by or-

thogonal springs shown in Figure 5.3. Therefore, seven vibratory modes are

modeled in this example, which are denoted by 81,'", 87 separately as indi-

cated in Figure 5.7. Since n_ > no in this example, the 7 structure defined in

Equation 5.50 is employed to construct the control command. The stiffness

matrix values for this case are assigned as

K = diag[452000 339000 226000 ; (3500000)4] Nm/rad ;N/m

where the same stiffness value is assigned to all translational springs. The first

three joint st[finesses are in Nm/rad, while the last four are link st[finesses in

N/m. The reference trajectories used in the last example are used again in this

simulation. Similar payload error is also tested here. In order to emphasize

nominal motion tracking, the eigenvalues for all nominal joint displacements

are assigned to (-3 -4 -5), and to (-1 - 2 - 3) for all vibratory modes.

The corresponding diagonal feedback gain matrices are given by

Kp = [(-47)6 (-11)7] K, = [(-12)e (-6)71 KI = [(60)6 (6)71

where the first six diagonal elements are the feedback gains associated with

nominal motion, and the last seven diagonal elements are that of vibratory

modes. The Q and P submatrices used in this case are

Q1 = [(10000)6(1)7] Q2 = [(5000)6 (1)7] Q3 = [(100000)6(1)7]

P1 = [(19380)6 (2)7] P2 = [(654.8)6 (.15)_] P3 = [(-25774)6 (-1.15)7]

P4 = [(262.9)6 (.11)7] P_ = [(-833.3)6 (-.08)7] P6 = [(78452)6 (1.82)7]
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Figure 5.7: A Six-Link Robot Modeled with First Three

Joints, Upper Arm, and Forearm Compliances
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which have a large difference between the first six and the last seven diago-

nal elements to avoid a null r/. The simulation results are displayed in the

following figures. Figures 5.8(a) to 5.8(f) are the nominal displacements of

joints 1 to 6. Notice that each joint starts with a positional error away fl'om

the reference trajectory. Figures 5.8(g) to 5.8(m) show the vibratory mode

deflections along the actual trajectory. Figures 5.8(n) to 5.8(s) display the

implemented voltages produced by the designed controller. Because of the

emphasis on precise nominal tracking by choosing advantageous eigenvalues

and P matrix, the nominal displacements converges satisfactorily to the de-

sired trajectories even under initial position error and inaccurate payload

information. In Figures 5.8(j) to 5.8(m), the link oscillations are bounded by

decaying envelopes around the trace of static deflection. It is noticed that all

vibratory modes are stabilized to negligible residual oscillations at the end

of motion. The nonzero, steady state static deflections in Figures 5.8(h), (i),

(j), and (1) are due to gravitational loading.

In order to test robustness of the proposed controller, a 30 % payload

error was created in the above simulations. To constrict the test conditions,

the payload error is further increased in this simulation. Now, the controller

constructs control voltage for a 68 Kg payload while carrying an actual pay-

load of 227 Kg which is more than three times of the assumed value. With

this new payload change, the last simulation presented above is repeated and

the results are shown in Figures 5.9(a) to (s). It appears that stability is

maintained in this case but joint 1, 2, and 3 displacements in Figures 5.9(a)

to (c) are affected by the large payload difference. This phenomenon could

be explained from a comparison of the new payload error (159 Kg) with the

system parameters listed in Table 5.2. Since the error is of the same order

of magnitude as the mass of links 1, 2, and 3, it creates an impact on the
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motion of the first three joints. Notice that the wrist motion shown in Fig-

ures5.9(d) to (f) is seldomaffectedby the payloaderror in this case.That is

becausethe wrist motion is affectedprimarily by the moment of inertia of a

given payload. In this example,massis the only payload error and due to a

short moment arm between the gripper and the wrist, payload error creates

little disturbance on wrist control. Tile effectof payload uncertainty on wrist

motion control will be presentedin the next chapter.
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5.9.3 Case 3: A Compliant Wrist and Four Link Compliances

In the T3-776 robot shown in Figure 5.1, the forearm is designe.d as a

lever rotating around the third joint, or elbow. The wrist and wrist actuators

are located at opposite ends of the forearm. This kinematic arrangement

has the benefit of using wrist actuators to counterbalance the inertia of wrist

and forearm. Inside the forearm, three slender, coaxial torsion tubes serve as

driving shafts connecting the wrist to its actuators as shown in Figure 5.10.

Due to the slenderness of the torsion tubes, the wrist is softer than the first

three joints. The third example will model the torsion tube stiffnesses by

three torsional springs and also include the forearm and upper arm flexibility

in controller design. The example model is sketched in Figure 5.11, where

the first three joints axe rigid and ill,"', _7 are the modeled joint and link

vibratory displacements. In this example, the influence of P values on system

response as mentioned in the previous section will be demonstrated. The

stiffness matrix is selected as

K = diag[(8500)3 ;(3500000)4] Nm/rad ;N/m

where the first three values are wrist joint stiffness in Nm/rad and the last four

values are lateral link stiffnesses in N/m. Similarly, the robot is controlled to

follow the reference trajectories specified in the last example under the same

initial position and 30 % payload errors. First, the same set of eigenvalues,

feedback gain matrices, and P and Q matrices used in the last section are

repeated in this case, which are

Igp = [(-47)6 (-11)71

Q1 = [(10000)6(1)7]

P1 = [(19380)6 (2)7]

/)4 = [(262.9)6 (.11)7]

Kv = [(-12)6 (-6)T]

Q2 = [(5000)6(1)7]

P2 = [(654.8)6 (.15)v]

P5 = [(-833.3)6 (-.08)7]

KI = [(6O)6(6)7]
Q3= [(100000)6(1)7]
/)3 = [(-25774)6 (-1.15)7]
P6 = [(78452)6(1.82)7]
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The simulation results are displayed in Figures 5.12(a) to 5.12(s) which shmv

satisfactory performance as expectcd. Now, for comparison purpos,',_, t h,'

last seven diagonal elements of Q1, Q2, and Q3 submatrices are increased 100

times to

Q1 = [(10000)6(100),] = [(5000)6(100),] 03 = [(100000)s(100) ]

according to the linear relationship between P and Q, the P submatrices are

then altered to

P1 = [(19380)6 (200)71

P4 = [(262.9)6 (I0.83)7]

P: = [(654.8)6 (15)_] P3 = [(-25774)6 (-115)_1

P5 = [(-833.3)6 (-8.33)7] P6 = [(78452)6 (181.67),1

This adjustment increases the last seven entries by a factor of 100 and reduces

the difference between the nominal and vibratory mode portions in P. Simu-

lation of the third model is repeated for the new P values and the results are

plotted in Figures 5.13(a) to 5.13(s). The system response deteriorates dras-

tically although the stability is maintained for the new P. This comparison

shows that a proper selection of P values can significantly enhance controller

performance. For example, in this case a large difference between the nominal

and vibrational entries in P is preferable according to the previous successful

exaanples. An analytical explanation for such results was presented in the

previous section regarding the effect of the P matrix on system response.
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5.10 Summary

In this chapter, various controllers are presented to control compli-

ant manipulators whose system parameters are assumed to be known a priori.

First, the difficulty of ideal acceleration assignment is analyzed, which could

be considered as solving an overdetermined problem. Due to the dimensional

mismatch between the available number of actuators and the modeled de-

grees of freedom, solution of a given overdetermined problem is not ensured.

Therefore, Lyapunov's stability criterion is employed to assist controller de-

sign. Since Lyapunov stability is defined in T¢1 space, control design even-

tually becomes a redundant problem where multiple selections for control

structure exist. Then, the orthogonal projection method is used to construct

the first proposed control algorithm. However, this method is applicable only

to systems with ne _ n_. Therefore, modified algorithms are presented which

demand less computational effort than the orthogonal projection method. In

the designed controllers, the effects of the P matrix on system stability and

system performance are discussed. To obtain a desirable P structure, an ex-

plicit Lyapunov matrix solution is presented, which allows direct adjustment

of the P matrix structure through regulation of Q matrix values. Three case

studies of the modified control algorithms are conducted on a compliant six-

link robot. The first case models the robot with six joint compliance. In

this case, the controller is further simplified after exploiting the inverse iden-

tity of the generalized inertia matrix. Voltage saturation effect is also tested

in the first case. The second example uses lumped parameters to model

the first three joint compliances and the forearm and upper arm fiexibilities.

Controller robustness is examined by a large payload uncertainty. Finally,

generality of the proposed controller is demonstrated through the third ex-
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ample which is a six-link robot with a compliant wrist and two flexible links.

Sevenlumped springs axeused to model structural fexibility. The influence

of P matrix values on controller performance is also investigated in the third

example.



Chapter 6

Adaptive Control of Compliant Robotic Manipulators

In the last chapter, the controllers for compliant manipulators are

constructed based on well-known system and payload parameters. The ro-

bustness of these controllers are illustrated in computer simulations through

a payload uncertainty which represents a discrepancy between actual system

and mathematic model. The simulation results show a reliable stability on

motion control under the presence of payload uncertainty. However, con-

troller performance degrades as the uncertainty becomes considerably large,

as shown in the second example of the last chapter where payload error is

twice of the assumed value. Generally, for routine operations, the payload

range could be estimated from a given task. Therefore, a conservative ap-

proach could be to choose the average payload value as the working object

of controller. Yet, a controller designed in this manner becomes inefficient

when payload varies significantly. Therefore, when the information on wQrk-

ing objects is not known precisely or if it varies significantly, such as in mining

or undersea exploration applications, it will be desirable and very effective

to have controller adaptively adjust the commands to meet the uncertainty

and additionally provide information about the payload. Such adaptive con-

trollers not only provide robots with a sense of intelligence but also assist

human operators to identify the working object. Being motivated by this

practical as well as challenging objective, an adaptive control law for compli-

212
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ant manipulators is developed and tested in this chapter.

Presentation of the adaptive controller will proceed in six sections.

The first section shows two methods of expressing manipulator dynamics in

a linear form in structural and payload inertial parameters which include

mass, center of mass location, and moment of inertia of each constituent link

and payload. By considering these inertial parameters as to be determined,

the second section introduces, for this linear system, a continuous-time stan-

dard least-squared estimation technique modified with exponential forgetting

factor. From the first two section results, an adaptive controller algorithm

achieving both motion control and on-line uncertain parameter estimation

is developed in the third section. The fourth section will test the proposed

controller through case studies. In the fifth section, update delay effect on

the adaptive controller performance is analyzed. Suggestions are given to re-

duce the impact of update delay on the controlled system response. The final

section will make comparisons between adaptive and non-adaptive control

algorithms by example studies.

6.1 Dynamic Formulation of Explicit Linear System

Parameters

It is important to have a precise dynamic description to build an

efficient controller. In robotic manipulators, dynamic equations are formu-

lated in terms of the generalized coordinates and inertial properties. The

former could be measured on-line by attached transducers such as tachome-

ters, potentiometers, and strain gauges; the latter (inertial parameters) are

composed mainly of the link length, mass, location of center of mass, and

moment of inertia of each link including the payload. These inertial parame-
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ters are generally constant for a given robotic manipulator, and manipulator

inertial magnitudcs are obtainable from the robot manufacturer. Yet, it is

desirable to have occasional on-site calibration especially when manipulator

is reassembled due to maintenance, transportation, or modularized structure.

Among these inertial properties, only the link lengths can be measured imm.e-

diately from the manipulator. The exact link mass, center of mass location,

and moment of inertia of a completely assembled manipulator are difficult to

calibrate directly, especially after adding the inertia of driving systems. Nev-

ertheless, it will be shown later that manipulator dynamics could be expressed

as a linear equation of these not directly measurable inertial quantities so that

an on-line calibration is possible experimentally.

In the following sections, robotic dynamic equations will be derived

by both the Newton-Euler and Lagrange methods. Unlike the dynamic equa-

tions introduced in the second and third chapters, the final dynamic expres-

sions are linear in mass, center of mass location, and moment of inertia of

each modeled link. Since manipulator payload is generally constant and could

be modeled as a fixed link attached to manipulator gripper, the following

derivations are general for manipulators with or without payload. Therefore,

the results could be applied to manipulators in off-line inertial calibration or

on-line motion control and payload estimation. Structural compliances are

included in the following analysis, and lumped parameter approximation is

employed to model manipulator flexibility.

6.1.1 The Newton-Euler Method

The Newton-Euler method of deriving manipulator dynamics is to

find the force and torques acting on each link first, then to project them to
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the upstream, closer to the base, driving joints. The sum of projected forces

or torques at each joint give the corresponding actuating force of a prismatic

actuator or actuating torque of a revolute joint. Without externally applied

force and torques, the force and torque on each link considered here are due to

inertial load. It will be shown that these inertial force and torques are linear

in mass, center of mass location, and moment of inertia of each link. Before

giving the derivation, it should be noted that the center of mass location and

moment of inertia of a moving link are constants only with respect to a fixed

coordinate frame attached to the link. So, in order to distinguish a local

coordinate description from a global one, a superscript, e.g. I, is added to

each spatial vector defined in a local coordinate frame fixed in link l.

Figure 6.1 shows a floating link, l, with a mass m, center of mass

location r t, and moment of inertia I_, whose components are

rx

r t = r u G _3., I_ -----

rz

and due to the symmetry in I_, I=v

L L Lz
E _3xa (6.1)

= _x, /'_ = L=, and ly_ = Ly. The

superscript l indicates that these parameters are defined by the /th frame

and hence constants. It will be shown that the final inertial dynamics are a

linear function of ten inertial parameters composed by

If we define pz E T_3 as the distance vector between the origins of frame

l and global frame, and let R t E T¢3 be the location of the center of mass

measured from the global origin, where both vectors are expressed in the

frame l coordinates, then

R l = p_ + r I
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Figure 6.1 A Simple Floating Link Model
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Rz = P_+# x r t (6.2)

where w t J 1 T¢3= [W x Wy Wl] T E is the angular velocity of link l expressed in

frame I. In Figure 6.1, the origin of l coordinate frame, point p, is generally

located along the axis of driving joint of link l or at the center of gripper, if

link l is a payload. Therefore, once the inertial force and torque are defined

at p, they can be transferred to the upstream links recursively.

The inertial force, F t E T_3, at the center of mass of link l is

F I = m_ _+ m_ l

= m(P z + _) + d} x mr' + wz x (u2 x mr') (6.3)

where _t is the vector of gravitational acceleration defined in l frame, and in

the global frame expression, _ -= [0 0 g]T E 7¢3 where g is the gravitational

acceleration constant. The inertial torque, 7-1 E 7¢3, at the same point is

_-' = I_C,,' +,,' × (r'J) (6.4)

A shift of both vectors to the origin p of I frame produces a force F_ with

2"_ = F _ and a torque T_ defined by

r_ = rZ+FxF _

= z_ + _ x (x_') + r_x m(P + _')

+ m{r t x [_ x r _+ oYx (_ x/)]} (6.5)

The last term in the right-hand side of the above equation is simplified as

follows. Given three T_3 vectors a, b, and c, a vector triple product identity

is defined as a x (b x c) = (a . c)b - (a. b)c, hence r J x (¢bI x r t) becomes

r'x (_x r_) = (_. _)_z_ (_. _,)_,

= (/. r's-/r'_)_ ' (6.6)
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the identity
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and rtr t'v is a 3 x 3 dyad. Also, by using

ax [bx(bxa)]:bx[ax(bxa)]=-(a.b)(bxa)

the term r I x [w t x (w t x rt)] becomes

r' x [_,_x(.,' x r')] = o_x [r_x (o_tx r_)]

= ._ x (_l. r_Z- r_r:)./ (6.7)

After collecting (-)a? t and w _ x (.)w t terms separately, re has a compact form

of

_-_'= z',,z,+ ,,, x g_o,+ m_,x (P + or) (6.8)

with I_ defined as

1_ = I_ + m(_ z. rlZ-- fir :)

[ Z_ + rn(r_ + r2,) Ixv - rnr_ry Ixz - rnr_,r_ ]r___ ,_,.:_ r___ ,_,'z,'_ Z_+ m(r_+ ,'_)

= Ipv_ Ipy u I,_z (6.9)

1,,= Ip._ I,..

Eventually, the elements of I_ will appear in tile final dynamic equations.

Since I_ is a constant matrix, P_ could be obtained once 1_, r t, and rn are

identified. From both force and torque expressions, Equations 6.3 and 6.8.

it will be shown that the final dynamic equations are linear in ten inertial

parameters

First, these ten parameters must be organized from the matrix multiplication

and vector cross product terms in Equations 6.3 and 6.8. In order to extract
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theseinertial parameter, two simple notations are introduced here. The first

notation is definedas

and for the crossproduct of any two T_3 vectors, A = [al a2 a3] T and B =

[hi b2 b3]T, the second notation is defined as

AxB [eliibl][a b3a3b 1= a2 x b2 = a3bl -- alb3

a3 _ b3 al b2 - a2bl

[o_°3] bl]= a3 0 -- al b2

--a2 al 0 b3

a=a [Ax]B (6.11)

Then, by the first notation,

[ ]I]
[ z,=_'_+ I,_,a_ + z_a'_ ]= z_,_t + I_,,a_ + Z_,_,.4

= [at'] Ip_

Ivyz

• IpZZ

(6.12)

and according to the second notation, the cross product terms in Equa-

tions 6.3 and 6.8 could be expressed by

_t x m,.t= p_xl,_,-t ; a_ x (_lx -'-")= [_tx][atx]m,",

; at× z_'a,= [at×l_'a,
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With the assistance of these notations, the force and torque at point p due

to the inertial force of link l could be expressed as

_-_ = o [-(P' + _')×] [_'.]+ [_'×][_'.] _'
def tt tt ,_6X 10= Rtat; Rt 6 (6.13)

where as is the vector which contains ten constant inertial parameters of link

l which are

aj = [al a2 "" alo] T 6 7Z1°

= [mm,'xm,'_m,'__r,=Ip_:_Ip_:zI,,_ I_ I,,_z]r (6.14)

So far, the inertial force and torque, F_ and r_, are /-frame vectors, they

should be converted into the global frame values to compute the correspond-

ing driving torque or force at each joint. Letting Tl be the 3 x 3 transformation

matrix converting l frame coordinates to global frame coordinates, then the

global coordinates of Ftv and T_ are simply given by

o],,= R l ato T_

d_t ' " ' R 6×1° (6.15)= Rtal, R I 6

Since the conversion process is a matrix premultiplication, the linear relation

with the constant inertial vector al is maintained in the above expression.

Equation 6.15 gives the inertial force and torque of the lth link in terms of

the global coordinates. The corresponding driving input at each upstream

joint is computed next. In Figure 6.1 a prismatic joint, i, is located at the

upstream of link l, then the driving force of i to counteract the inertial force
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and torque at link l is

Fi l -_- s i • Fp

= [s T 0 0 0]R_a,

d°d (Rr),a_ ; (RF)T e re1° (6.16)

where si is unit directional vector of joint i. Summation of all inertia force

on i gives the ith joint actuator force as

N

F, = _F,
l=i

N

= _(Rv)la z
l=i

= [0 ... 0(R_); ... (Rr)Nla

= RFa; R T E T¢1° (6.17)

where N is the number of links including payload and

a = [a T a T -.. aT] T e R10N

Notice that since all links located at the upstream of joint i contribute no

inertial effect on i, they are excluded from the above force summation. Simi-

larly, in Figure 6.1, joint I is located at rjz above a revolute joint j, the torque

on joint j due to the inertia of link l is

_'jl -= s i.(rj_xFp)+sj.rp

d___a(RT)ta_; (RT) T e R 1° (6.18)

where sj E T_3 is unit directional vector of joint j. Notice that scalar triple

product identity a. (b x c) = (a x b)-c is used in the above derivation. The
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sum of all inertial torque on joint j is

N

I=j

N

= E(RT)lat
l=j

= [0 ... 0(RT)j .. (R )N]a

def RTa ; R T E 7P_10 (6.19)

It should be noticed that the above derivations are applicable to both rigid

and lumped-compliant manipulator models. In the lumped complaint ma-

nipulator model, the primary link and joint oscillations are depicted by the

movements of pseudo prismatic or revolute joints which are driven by lumped

springs. By following the lumped model description, joints i and j in Fig-

ure 6.1 could represent either actual or pseudo joints. For actual joints, F,

and vj are respectively the actuator driving force and torques. For pseudo

joints, Fi and ri are the stored resilient force and torque in lumped springs

located at joint i and j separately, which are Fi = -I(_i and rj = -Kj/3j,

where Ki and Kj are spring stiffnesses and fli and /3j are spring deforma-

tions. Therefore, as shown in Equations 6.17 and 6.19, the inertial dynamics

of a robotic manipulator, rigid or lumped compliant, could be expressed as

a linear function of inertial parameters a. Similar dynamic expressions are

employed by [Sklar, Hudgens, and Tesar, 1990] to perform calibration of rigid

robot inertial parameters.

6.1.2 The Lagrange Method

The first step in the Lagrange method is to find system kinetic and

potential energy expressions in terms of structural inertia. Let KEt denote the
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l'dnctic energy of link I, then the total kinetic energy of an N-link manilmlator ,

including payload, is
N

KE = _ KEt
1=1

and letting (PEg)t denote the gravitational potential of link l and (PE_)t be

the potential energy due to structural resilience of l, then the total potential

energy is
N

PE = _ {(PEa), + (PE_),}
l=l

Typically, ten constant inertial parameters of link t, which are similar to that

defined in Equation 6.14, will be grouped from the kinetic and potential en-

ergy expressions into a linear form. Since the differentiations in the Lagrange

equation are linear operators, the linear relationship with inertial parameters

remains intact in the final dynamic equations. Before presenting this deriva-

tion, a note about the usage of notation is that although kinetic and potential

energy axe scalar physical quantities and independent of the selection of co-

ordinate frame, the following vectors are defined in global frame except those

added with a superscript I to emphasize/-frame vectors.

According to Figure 6.1,

2KE_
T ! T= + +,o T I;Tt

= rnpTp + 2m15T÷ + mi'T÷ + wTT_I_TtTw (6.20)

in which Tl is the 3 x 3 transformation matrix converting l frame into global

coordinates, and co E T_a is the angadar velocity of link I. For ÷ = co x r, the

(rn_T_) term in the above equation could be written as a dyad matrix form

through the following operations

m÷Tl: ---- rnr'r
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= m(_ × _)-(_ x _)

= m{w. [r x (w x r)]}

= m_. [(_. _)_ - _(_._)]

= _T[m(_TrZ- r_T)]_

= wTTl[m(rlTrl:T-- rirlW)]TiTw , (6.21)

where r is transformed into r I by the relation r = Tlr l, also the orthogonal

property of coordinate transformation matrix is used here, i.e., T_TT_ = I, and

2" C/£3×3 is a unit matrix. Then the moment of inertia term in the kinetic

energy expression could be redefined with respect to the point p in Figure 6.1

instead of the center of mass as

re÷r÷ + _rT_ZJZr_

= _Z_'T,_ (6.22)

where

I_ -- 1_ + m(rlTrl2" -- fir IT)

Because the constant matrix I_ is symmetric, it could be decomposed into six

matrices

/p,, /p,v Ip,z

[,00][0,0]i00,]= ooo _p_+ loo I_+ ooo z,_z
0 0 0 0 0 0 100

[ooo][o+ 0 1 0 /p_-t- 0
0 0 0 0

10

i=5

0011000]0 1 I,,,.+ o o o xpz.
10 O01

(6.23)
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where

and Ipi, i E {5,.. -, 10}, is defined accordingly. By the distributive law of ma-

rl'ix multiplication, the kinetic energy of moment of inertia could be expressed

as a linear sum of the above constant a i elements, or

10

i=5

10

= _(4 _ RGTT,Z.,T,_ .a,41 a,
i=5

10
• T *-

(6.24)
i=5

In the above expressions, angular velocity w is replaced by the joint speed

and rotational influence coefficient RGz through the relation w = RGIq, where

q ___ [0 T _T]T E T_ aO+n_, and 0 is an no vector of actual joint displacements and

B is an n_ vector of modeled pseudo joint variables. Similar replacements will

be used in tile following derivations so that the first and second order influ-

ence coefficients could be employed to formulate the final dynamic equations.

Notice that the above I_, with i = 5,.--, 10, are symmetric matrices.

Now for the mpTi • term in the 2KEl expression given by Equa-

= raP. (_ x ,-)

= raP. [_ x (,-=_+ r_ + r.Z)]

= -P. (_ x _)(m_=)- P. (# x _)(m,'_)

- P. (_x _)(m,-_) (6.25)

tion 6.20,

where _, !), and _? axe respectively x, y, and z unit directional vectors of l

frame coordinates. By the influence coefficient definitions w = RGI0 and
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P = TGpO, the above equation becomes

2rap T÷ = mp r÷ + (mP T÷)T

= E 4_{-[TG'( _× Ra,)l-[_G.(_x Ra,)7"}O(,_r,)

4

d_ _(OTZ.O) _ (6.26)
i=-2

with [as a3 a4] = [mr_ mr u mrz], and I_, I_, and I_ are symmetric matrides.

In the above equation, since RGj is a 3 x (no + no) matrix, the cross product

g x nG_ means cross product of g with respect to each T_3 column of nGt,

which is defined in the followings. Set 0 = [01 q2 "'" 0,_o+,_] r and nGz =

[cl c2 "" c,o+,_¢], where ci 6 T_3, i 6 { 1,..., ne + ha}, is column vector of nGt,

then

and

no'l-n_

i=1

(6.27)

no+n,o

i=1

= [(_ x _,)(_ x c_) ... (_ x c,,o+,,,,)]0

ad _ x riG�1 (6.28)

Finally, by defining al = m, the linear term of a, in 2KEI, Equa-

tion 6.20, is simply

mp_p = m(OT_G_ _GO)
def= (OZtO)_, (6.29)

and I_' = (I_) T. A collection of the above expressions gives

10

2KE/ = y'(o TIi*O) ai
i=1

= [(oTI_O)(OTI_O) ... (0WI[00)]lat

d_ [qrli.0], al (6.30)
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where [_TI_(7]TE Ti m with (_TI;_) as the jth element. By stacking up the

constant inertial parameters of all links into a column vector a, the total sum

of N-link kinetic energy could be written as a linear equation of a as

2KE= [[OTX:OII[Yx.O]_.. [Yx:OIN]a (6.31)

with

a = [._ ._ ... _]_ e n '°N

A linear relation of a could also be found for gravitational potential energy

expressions. Since among the constant parameters only m and mr show up

in gravity force, the derivation of the lth link gravitational potential energy

is straightforward as

(PEg)z = m_ . (P + r)

= (_. P)m + (_.mr)

= [(_,P) (_-_) (_. _) (0. _)1[_,_ _ _1_

= [(_.P)(_._)(_-+))(t)-_)O0 .-. O]at

dej [(,_l)(_D_2)... (,_10)] at /

da ['P£1]Z az (6.32)

where _ e T_3 is vector of gravitational acceleration, and [PCI] T e T__°, with

(:PEj) as the jth element, is defined for notational convenience. Therefore,

N

PE = [[T'£+], [P$,]2 "'" [PEi]N] a + _(PEo), (6.33)
l=l

Since the time derivative and partial differential in the Lagrange equation

d.OKE) OKEOPE[v] (6.34)_--_q oq + o--_-= o

are linear operators and a is a constant vector, the linear form of a is main-

rained in the final dynamic equations. In the above equation, v is an n_
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vector of generalized actuator force. Before presenting details of the dynamic

equations, the resilient potential energy term, _l(PE.,)t, in the Lagrang,,'

equation is moved to the right-hand side and placed under the vector of gen-

eralized force as

V _ 0 N V

where K E 7¢ _°x'_ is a diagonal stiffness matrix and _ E _'_ is vector

of compliant deformations. This arrangement makes the dynamic equations

exactly linear in a in the following Lagrange equation

-_(_q ) Oq +-_q _(PEg), = -I4. j3v (6.35)
kl=l /

Recalling that in the previous chapters the inertial dynamics with well-known

system inertia are expressed as

fl v

similar notation will be used here. In the above derivations, !iITI*il and Pgi2 s

are respectively the kinetic and gravitational potential energy associated with

a unit inertial parameter ai of a given link, they are deliberately formulated

so that every I_' is symmetric, hence the dynamic equation associated with

al could have a familiar form of

with

] O(gq I_q) + _ (6.36)Z;_ + (fl), d _'_" "" O(lqrI._(_) OPE_
(fe), = -_( 0,_ ) Oq Oq

] I'T *"
(f')' = i;(_ o(: I;q) opE,
(f _), -N + -Nq

And for the whole manipulator

(6.37)

[( [ ])](fl)i .-. a= -Kfl ; iE {1,2,...,10}... ,r;i + (::)_



which is further defined as

where U' = [v T (-Kfl)T] T, and

Zo = Zo(q, gl, q) = ['" (I_(t
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Z[_a = U' (6.39)

+ [ (fl)i(f2)i ])t"" ] fir ("°+'_o,×l°N

where the subscript I denotes the inertial dynamics of link I, and i means the

dynamics of a unit parameter al of link l, in which i = 1,..-, 10. Since the

* "* O rl "Tr*()xfinal inertial dynamics are composed by elements I i , I_, and _t_q 1/7), they

axe tabulated in Table 6.1 for i = 1,2,..., 10. Apparently, for given Z_ and

U', a could be estimated from the linear equation Z_a = U'. But Z_ contains

joint acceleration _/, and general manipulator sensor only provides position q

and velocity _ readings, therefore, the inertial dynamics are integrated with

respect to time to remove dependence on acceleration signals. Because inte-

gral is a linear operator, the linear relation of a is intact after integration. By

defining Zo = f Z[_dt and U = f U'dt, the final linear equation is

Z0a = U (6.40)

and Zo = Zo(q, il). This equation will be used to derive an estimation algo-

rithm for uncertain a in the next section. The above Z0 could be derived

term by term from the following integration equation

(f2)i ]l dt (6.41)

with i £ {1,2,-..,10} and l _ {1,2,...,N}. Notice that I_"= ]'_(q,,j) is in-

dependent of acceleration. As an example, details of the the above dynamic

elements are listed in Table 6.1 for link I. A part of Table 6.1 results are used

to construct (fl), and (f2)i defined by Equation 6.37.
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Oq

i)q

Oq

TGp =

RGl =

^ ^

; s = x,y,_.



: [(,_× _) (._ × _) (_ × _)]

VTz = [(-_ × RG_)(-9 × RGz)(--5 × RCt)]

(end of Table 6.1)
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6.2 The Least Square Estimation Method for Constant

Linear Parameters

In linear equation Z0a = U, with Z0 E T/(n°+"_)xl°Iv, a E T_ l°N,

and U E T_-0+n_, for given Z0 and U, existence of a unique solution a relies

on the relation between U and the column space of matrix Z0. If U is in

the space spanned by the column vectors of Z0, then at least one a satisfies

the equation. In contrast, if U is not entirely inside the column space of Z0

then there is no solution to the equation. However, Z0 = Zo(q, (?) which is a

nonlinear function of position and velocities, hence its column space changing

not only with position but also with speed of motion. Therefore identifying

the relation between U and Zo directly is not a proper way of solving a.

Despite the difficulty of obtaining an exact a, an alternative way is to find an

estimate & that has minimal estimation error defined as I[Zo&- UI[ , which

is generally known as the least square method. The algorithms of the least

square estimation method could be found in [Astrom and Wittenmark, 1989]

and [Li and Slotine, 1987]. Since Z0 is a nonlinear function varying with

position and velocity and a is a constant vector, the time history of Zo is

included in the optimization process by defining a cost function as

j(a(t)) = ]o' e-°('-')llZo(_)a(t)- v(s)ll2d_ (6.42)

in which e -'(t-') is an exponential forgetting factor with a > 0 to weight

higher on current error than far past one. To find an optimal &, the gradient



232

of cost function J(/t) with respect to 5_is set to zero, which produces

(6.43)

or

R-lfi = O

with R -1 E ,]'_10N×ION and O E T_ION defined respectively as

n -1 he2 fote-_(t-s)Z_o(s)Zo(s)d_ (6.44)

0 a,f for e-_(t-')zT(s)U(s)ds (6.45)

since ZTZo is a positive semidefinite matrix, R-' could become positive def-

inite and invertible after integration. This condition is defined as persistent

excitation. If R exists, then

g_ = RO (6.46)

However, the convolution integrals in R -x and O require storage of all past

data, and in addition, on-line inversion is required for R, therefore the above

approach is ineffective in computing h. An alternative and efficient way of

computing £ is to integrate _a and/_ recursively by

t+&ta(t + At) = a(t) + _,dt
,It

ft+_xtR(t + At) = n(t) + kdt
Jt

where /_ could be obtained from R -1 and its time derivative (R-l). For

persistently exciting system, R -1 > 0 so RR -1 = I whose time differentiation

gives RR-' + R(R-')= 0, hence/_= -R(R-')R.

Since in Equation 6.44, both integrand and integral limits are func-

tions of present time t, Leibnitz' rule is applied to find (R -1), which states
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that for a given integration defined as

_-, = F ('1+(.<,_)d_
J,,(t)

i,ts time derivative is

= [_('_°+('_'_)d._+ _(l,(t), ""m,(t/ .d.(t)
(R-') ,,,I,I Ot r_ Tfi ¢,(,(tl,t) _7

Since in our case b(t) = t, a(t) = 0 and q_(,s,t) - c-°('-')Z_'(s)Zo(s),

f,, O_(s,t]l._(R.:-,) = _(t, t) + at

= z_'(_)zo(_)-,_-' (6.47")

which gives

and similarly

k(t")= _n(t) - _(t)z_'(t)Zo(t)R(t)

() = zJ( t ")uCt ) - _,o

° 2.--"Frc)m Equatmn 6.46, fi frO which has a time d,,riv:_tiv,,

_o + ROa

= RzI(cr- Zoa)

= - RZTo'e

where _ is the estimation error defined as

clef
= Zo&- U

= Z,,(/,- a)

(6.48)

(6.4,,))

(6.5(_)

(6.51)
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Once Z0 and U are available in estimation process, R and _ are computed

from Equations 6.48 and 6.50 and then integrated over a time step to update

R and gL. One comment on the above update algorithm is about the initial

value R(0). At t = 0, the upper integral limit of R -1 in Equation 6.44 is

zero, which means that R-X(0) = 0 and R(0) = _. It is improper to use this

initial value to estimate a, so a nonzero but small value is practically chosen

to be the initial value of R -1 , therefore, R(0) is large but finite. Generally, a

diagonal matrix is chosen to be R-l(0). This replacement of initial value has

minor effect on the precision of R-x(t) value in the long run, which can be

shown by an analytic integration of (R -1) in Equation 6.47 which produces

n-'(t) = e-_'n-'(0) + fo'e-_('-s)zT(s)Zo(s)ds (6.52)

the above equation shows that R-l(0) decays exponentially with time and

has almost no effect on R -1 after a large t.

Since the least square method finds an estimate minimizing the cost

function J, it is important to further examine the convergence of the estimate

to an exact value. First, let _ -- (£-a) be the estimate error, so for a constant

a, a -- g = RZTe by Equation 6.50. Then, a Lyapunov type function is

defined as

V = _TR-I_ (6.53)

where R -1 is positive definite for a persistently exciting system, hence V > 0,

V _ _ 0. It can be shown from Equations 6.47 and 6.51 that

ff = 2hTR-la+ _T(R-I)_

= -2 TR-'(Rz0r )+ + Z oZo) 

.-_ __gTg __ aV (6.54)
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since a > 0 and V > 0 for all _ # 0, then V < 0, Y 5 # 0, which means

.r_h.at the estimation is stable and convergent. Another way of investigating

convergence is by direct integration of _ defined as

From Equation 6.47,

ZTo(t)Zo(t) -- (R-l) + oR -1

a substitution of the above expression into Equation 6.55 produces

=a = -R((R -_) + aR-a)_

which has an equivalent form of

R-_a+ (R-1)_ + aR-'_ = 0

(6.55)

After multiplying both sides by e_t and using time differentiation, the above

equation becomes

d at 1 ~

_(_ ._- a) = 0

Let _(0) denote the initial estimate error, then

_'R-'(t)_(t) = R-'(0)_(0)

and

_(t) = _-_'R(t)n-l(0)_(0)

Recalling that _ --- (gL- a),

gt = g_+ a = a + e-OtR(t)n-X(O)_(O) (6.56)
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for finite R-l(0)and fi(0), fi _ a as t --_ oo, therefore, for persistently exciting

R -1, fi approaches to a as t increases. Hence, convergence of estimate to exact

solution is ensured provided that the system is persistently exciting.

Obviously, an essential requirement of the least square method is the

condition of persistent excitation, or R -1 > 0. From Equation 6.44, far past

ZToZo terms decay exponentially with elapsed time, so near time ZToZo terms

must have full rank to maintain a positive definite R -1 . This means that the

column vectors of near time zToZo must span the space that a resides. This

could be verified by a simple examination of Equation 6.44 which is rewritten

as

with 0 < tx < t. If R -I stops excitation after tx, the first integral becomes

zero quickly as t increases, but the second term is positive semidefinite, so the

inverse of R -1 is not ensured. In other words, in order to have an invertible

R -1, the second integral must maintain positive definiteness and hence be

persistently exciting.

Notice that with persistent excitation, convergence of estimate also

can be shown for the case of a = 0, i.e., equal weight on all data in Equa-

tions 6.44 and 6.45. For a persistently exciting system, R -x grows continu-

ously with time while its inversion R reduces in magnitude and eventually

becomes zero. From Equation 6.56, with a "- 0,

fi = a + R(t)R-'(O)fi(O) (6.5s)

for finite R-l(0) and fi(0), & ---* a as R _ 0. But according to Equation 6.56,

due to exponential decay, an estimate with exponential forgetting converges
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faster than one without exponential forgetting. For estimation without expo-

nential forgetting, the above recursive formula, Equations 6.48 and 6.50, are

legitimate after replacing a with zero.

Application of the least square method requires well-known Z0 and

U. Generally, in an off-line calibration of manipulator inertia, simple com-

mands like sinusoidal or trapezoidal functions could be used to create ma-

nipulator motion, from which position and velocity readouts are collected to

construct Zo and U. However, some inertia might not be activated during a

given motion. For example, if one particular link has no rotational movement,

its moment of inertia is not excited. If this happens, the system is not persis-

tently excited and estimate may not converge to the exact value. Therefore,

more tests involving different manipulator configurations are useful to assure

the accuracy of estimation. Once structural inertia are calibrated, they are

treated as known parameters, which makes payload inertia the major un-

certainty in robot controller. In the next section, an adaptive controller for

compliant manipulators is introduced, which conducts on-line estimation of

uncertain payload and uses estimates to form control commands for trajectory

tracking.

6.3 Adaptive Control Algorithm for Compliant Manip-

ulators with Payload Uncertainty

Before presenting the adaptive control algorithm, compliant manip-

ulator dynamics are reviewed briefly. In the followings, manipulator inertial

parameters are assumed well-known and payload is the only uncertainty to

the controller. For a compliant manipulator, the dynamic equations, includ-
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ing payload, are derived in Chapter 3 as

A', NT 0 'P, /2

where A t E "R '_°×'°, E 6 R "_×n°, and A2

[" ]= -K/3 (6.59)

6 T_n_×"_ are elements of the

generalized inertial matrix composed of nonlinear functions of actual joint

displacements, 0 E 7_ '_°, and vibratory modal amplitudes, /_ 6 T¢.'_. Also

f_ 6 7_n° and f2 E _'_ are coupling terms containing Coriolis, centrifugal, and

gravitational forces, which are functions of 0, 0, 8, and/). Note that actuator

dynamics are excluded from the above expression. Let subscript k denote the

known system parameter and subscript u represent the uncertain payload

dynamic parameter, then the generalized inertial matrix in Equation 6.59

could be divided into

and [fi T fr]r is composed of two parts as

For uncertain payload, section 6.1 shows that a linear expression of payload

inertial dynamics axe given by

[( 10, /0=,z;a = ... i,'_ + (f_),

where a E 7¢.l° contains payload constant inertial paxameters

[al a2 aa a4 a5 a6 ar as a9 alo] -- [m tara mru mrz Ip_:z Ipx_ Ipzz Ipyy Ipyz Ipzz]

and q = [0 T/_T]T. Since q is independent of a,

E A2 ,,

Z_a has an equivalent form of

f[ ]_ (6.63)



239

in which

and

E A2 . = "= I_ai (6.64)

[],0[ ](fl), (6.65)
:I =_ (f2), a,
f2 u i=l

Since it is preferable to have a complete system dynamic description in con-

troller design, actuator dynamics are added to the above equations, which

are defined in Chapter 3 as

JO + DO + K,O + v = u

in which the generalized actuator force v is defined in Equation 6.59 as

v = [A', _T]k 3 + (fl)k + [Ai ET],, 3 + (fl)-

Substituting the above v into actuator dynamics and defining

(6.66)

(fl)k = (f_)k + DO + K,O

(A,), = (hl)_

(f,). = (f;)_

the total system dynamics become

with

E A2 E A2 k ,,

fl fl

(6.67)

(6.6s)

(6.69)
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In the following control law development, uncertain payload inertial param-

eters will be estimated on-line. For the purpose of distinction, a hat, (:),

will be used to denote estimate of an uncertain element, and tilde, (:), will

represent the error of estimate. For example, fi is the estimate of a and

fi = (fi - a). Similarly, for the uncertain term in Equation 6.64 the estimate

and estimation error are expressed respectively as

and

and so forth.

£, ] 10
u i=1

10

= 2Er ,
i=1

(6.70)

The adaptive controller for dynamic Equation 6.67 will be con-

structed from two considerations. First, it is desirable to assign each nominal

and vibratory mode a specially designed acceleration composed by feedback

of position and velocity values and feedforward of desired position, vclocity,

and acceleration. Ideally, this assignment will produce an error-driven dy-

namic system which has an exponential decay response after proper selection

of feedforward and feedback gains. If accomplished, nominal displacement

would converge to the desired trajectory and structural oscillation would be

eliminated simultaneously. However, the system has ne + nz degrees of free-

dom but only has ne actuator inputs. The acceleration assignment from

actuator inputs is a mapping from TC_° space to T_'_°+"_ space, and finding

exact inputs for the designed accelerations is equivalent to solving an overde-

termined problem, therefore, unless the assigned acceleration is in the range

of mapping, no solution or actuator inputs could generate the ideal result.
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i_ Sincea direct assignmentof designedacceleration is difficult due to

dimcnsionalmismatch, the Lyapunov'ssecondmethod is appliedto assistcon-

troller design. The merit of the method, besides simplicity, is that it defines

stability criteria in R 1 space, which will eventually transfer the control design

from an overdetermined to a redundant problem. In applying the method, a

quadratic form of error state is chosen as the Lyapunov function which has

a positive scalar value for all nonzero error states. The actuator inputs are

structured so that the Lyapunov function has negative time derivative as long

as error state remains nonzero. Consequently, error state approaches to zero

asymptotically, and convergence of nominal and vibratory displacements to

the desired states and estimates to actual values are ensured.

According to the first consideration, for desired trajectories 0r and

fir, the designed accelerations are defined as

od = & - K,o(O-&)- K.(O-Or)

(6.71)

where K_o, Kzo E T¢"°×n° and Kp_, K m E _no×,,a are diagonal constant gain

matrices. Let e0 E T¢TM and ez E T¢TM be the error states defined as

e0 -- (0- 0r) + Kpo(O --Or)+ IrIo/(0- Or)dr (6.72)

e_= (t) -/)r) + K_(Z - Z_)+ K_ f(Z - Zr)dt (6.73)

then e0 = 0 - 0g and _ = _ - _d. Equations 6.72 and 6.73 are two simple

ordinary differential equations with stable eigenvalues after proper selection

of gain matrices. For zero e0 and e_, the differential equations are homoge-

neous, and transient response of (0 - 0_) and (B - _) decay exponentially.

Furthermore, by taking the Laplace transform of the above equations and
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using the final-value theorem, it can be shown that ee --_ 0 =:_ 8 _ 8r and

e_ _ 0 _ t3 _ _r. This implies that if nominal and vibratory a.cceh, rati(ms

obtain the designed values, 0 will track the desired trajectory 0r and vibra-

tions will be suppressed by setting _r = _r = fir = 0. Since the designed

acceleration is a vector in T¢ne+"_ and the control vector is in 7_ '_e space, it is

generally difficult to create the desired assignment, therefore, the Lyapunov's

second method is employed to assist controller design. Since exact payload is

uncertain, estimation of payload parameters will be included as part of the

design criteria.

First, a dynamic term defined as

A1 _T 0d

is subtracted from both sides of Equation 6.67,

/1
/2 ] (6.74)

which results in

k

(6.75)

then by adding and subtracting an estimated term

/2 ]_ (6.76/

to the right-hand side of Equation 6.75, system dynamic equations become

A1 _T eo u

f2 ],_ (6.77)
+ [
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The input u is chosen in a composite structure as

u = ul + us (6.78)

where u l is defined as

ux=[A1ET]_ _a +(fl)k+[/_'ET]" /_d +(]')_ (6.79)

By introducing two notations Z 1 and $1 as

lO _d

and

S1 def [_] A2]k _d nu(f2)k+[_fk2]u _d nt-(f2)u (6.81)

with Z1 E 7¢ (n°+_)×l° and $1 E T_TM, then Equation 6.77 is reduced to

A1 E T 40 u2

To find a u2 stabilizing the system in Equation 6.82 and eliminating payload

estimate error _, a Lyapunov function is selected below. Since the inertial

matrix in Equation 6.68 is positive definite, the selected Lyapunov function

is

V = _pe E As e + fiTR-I_ (6.83)

where e = [e0T e_] T e 7"t"°+_, and p is a positive scalar constant whose

function is to assist payload estimation as shown later. The purpose of adding

the quadratic term of _ in V is to include payload estimation in controller

design. A similar Lyapunov function is proposed by [Slotine and Li, 1988] to

control rigid robotic manipulators. Ia the above equation, R -1 is deft_ned in

the last section as

R-a(t) = _o' e-_(t-') ZT(s)Zo(s)ds
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which is a positive definite matrix for a persistently exciting system. How-

ever, unlike the last section derivations, now the only uncertainty is payload

instead of the whole structural inertia, therefore, Z0 is redefined. From Equa-

tions 6.63, 6.67, 6.68, and 6.69

- -K3 E

de__f U'

A

]
(6.84)

then Zo = f Z_dt and U = f U'dt. The integration is to remove the require-

ment of acceleration signal in Z_. From the above relations, an estimate crror

is defined as

= Zoh-U

= Z0(_ - a)

= Z0_ (6.85)

From Equation 6.83, the time derivative of V is

lAx E T_" -" pet E A2 1T[A1_+_pe E A2 e+ fiTR-'a+ I_T(R-1)a (6.86)

where the derivative of the generalized inertial matrix could be decomposed

into known and uncertain parts as

and recalling that

then for constant a

E A2 ,_== I*a.

x2 :E#o,,__, (6.88)
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According to the above result, the associated quadratic term in T_ could be

replaced by a compact notation Z_a defined as

Z2a dd eT[A1 _T]= E A2 e
lO

i=1

(o.69)

[ ._ cT]

clef A1
Z2_I = e T _. : e

2 A2

10

= _--_.(eTCe) fi,
i=1

(6.90)

[Z2_ da eT _kl

E A2
10

= _--_.(eTIi'e) 5,
i----1

(6.91)

and

Zza = Z2_ - Z2_ (6.92)

where Z2 E R10. Notice that in the above definitions a is replaced by h and

directly after time derivative, which means that no _ or a term appears

in the above operations, so hat and tilde are placed on the top of Z_l, _]

and/it, to denote this relation. After substituting the above expressions into

Equation 6.86, I3" becomes

u2 1 hi _T 1 A1 E
= • • e+_ _ .__r peT -K3- S1 + 2 E A2 k E A2

+ _TR-la + 2hT(R-1)_ -
1

+ peT Zl _t -_pZ2_ (6.93)

Further simplification of I7 expression is possible by defining us as

1. 1.- .*T

u2 = ua - _[A, _Tlke -- _[A1 X ]ue (6.94)
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and introducing a new notation $2 detined as

also using the last section derivations that (R -1) = -gR -1 + ZToZo, and

Z0fi = e. By combining these results, l)" becomes

[ u3 ]peT -Kfl- S1 + $2

1 T 1 i r

• 1 T
jr giT(R-agi - _pZ 2 + pZ_e)

9

(6.96)

Since the goal is to have a negative V for all nonzero e and _, a is selected

to create a relation that

n-'i- i.z¢ + ez[e =
2

which means that parameter updating formula is

(6.97)

then u3 could be chosen so that

.= ___eTe
P

(6.101)

• 1 T
-- R(_pZ 2 - pZTe -- ZToe) (6.98)

Additionally, by an earlier definition e T = _TZTo, _r results in

l)=pe T -K_ S1+$2 -_ _e e--_ah R-_ (6.99)

where the last two terms in the right-hand side are in negative quadratic

form, therefore, u3 is chosen to produce a negative first term. Since the first

term is a scalar value and could be expanded as

pet --I(/3 - S 1 --_ S 2 = P{EoTU3 Jr e_'(--Ik'/_ -- Sl Jr S2)} (6.100)
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with c_1 a positive constant, therefore,

_/ = --aleTe - 1ere -- lagtT R-l g_ (6.102)
2 2

In the above expression, V < 0, Ve and _ 7_ 0, which means that the designed

controller will make [e0T e_] T _ O, or implicitly 0 _ 0, and ,_ _/_,, and also

£t ---_ a.

Since Equation 6.101 is a scalar function of no-vector u3, finding a

u3 satisfying the equation is solving a redundancy problem, hence more than

one solution exists for u3. Therefore, additional criteria could be enforced in

the selection process. Here, u3 is chosen to have a minimum Euclidean norm

value Ilu311. By defining

71 = e_(-K_ - S, + $2) + Cqere (6.103)
P

Equation 6.101 could be rewritten as

e0Tu3 + 71 = 0 (6.104)

which has a minimum norm solution

-- 7--2-1 (6.105)
U3 -- e0Te 0 e0

for e0 ¢ 0. Notice from Equation 6.99 that when e0 = 0, ua has no effect on 1)

and a negative 1)"is not ensured. To resolve this problem, the Lyapunov equa-

l T into Equation 6.83tion could be modified by adding a positive term _u 3 ua

which becomes

2 z e + aTn-' + (6.1o6)

then following the above derivations,

_" pe{u3 + pe_(-K_ - S, + S2) + uTiL3 I T 1 r--= - {e e - _aa R- _ (6.107)
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in which ua will be chosen to satisfy the equation

peTu3 + pe_(-Kt_ - $1 + $2) + uTit3 = --a2uTu3 -- _leTe

so that

1 T _ _aRTR-IR= --(_leTe -- o_2uT3u3 -- _ e

(6.108)

(6.109)

where o_ > 0. Again minimum H_3[I criterion is applied to assist selection of

u3. By defining

72 = peTu3 + pe_(-K_ - S, + $2) + a2uT3u3 + a,eTe (6.110)

the solution u3 is

_3- _2
ilu311=u3 (6.111)

provided that u3 _ 0. In the modified Lyapunov function, "_ < 0 for all

e and _ _ 0 is ensured for u3 _ 0. Since u3 is the control input, it could

be manipulated directly to have a nonzero value during control process. Or

from Equation 6.111, since/t3 is proportional to _2 defined in Equation 6.110,

by choosing very small p, al, and a2, u3 varies slowly and could have a

nonzero value. Since both actions require adjusting u3 at the beginning and

end of motion which might create disturbance to the system especially when

nominal joints are at steady state, the first controller is preferable. Notice

that although the first controller can not guarantee a negative _" when ee = 0,

yet at ee = 0 the nominal trajectory _ has reached steady state 0r, and

estimation should converge to the exact value in the early stage of control

for a persistently exciting system, therefore, control could be ceased, which

allows structural damping to dissipate residual oscillation naturally.

In Equation 6.98, the estimate update equation is defined as

a = R(Ipz T - pZTe -- ZToC)
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aiad in the least square method the update equation defined in Equation 6.50

is

a = -RZIo'e

for a constant a. By comparing both results, it is apparent that with a

very small p, the estimation derived by the Lyapunov method will act like a

least square result which is designed purely for estimation. Another advan-

tage of using small p to improve estimation performance can be seen from

Equation 6.99 which states that

_r = pe T -K13-$1+$2 - -_e e- a_trR-lgl

in the case that e0 = 0 arid et_ _ 0 the above equation becomes

1 T 1 T 1
"v"= pe_(-Kj3 - S, + $2) - -_e e - -_a_ R- _ (6.112)

and V" >_ 0 occurs at

1 T la_TR-1 _Sl + S2)> c +

thence convergence of et_ and _ are not ensured. Recalling that e -- Z0_, the

above inequality could be rewritten as

1 ~T T aR-1)_+ > (ZoZo+

which could be interpreted geometrically as a baIIof _ bounded by pe_(-K/3-

Sa + S_). So when _ enters the ball defined by p, convergence of estimation is

not justified because of '¢" _> 0. But a small p will reduce the size of unjustified

region and result in better estimation. Hence, a small p will be adopted in

the later case studies. The adaptive control system block diagram is shown

in Figure 6.2.
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_rl_r

Estimator

'IController m Plant
v

Figure 6.2 Adaptive Control Block Diagram
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6.4 Numerical Case Studies: Case 1

Verification of the designed adaptive controller is conducted nUlller-

ica lly on the motion control of two flexible manilmlators carrying uncort_ain

payload. The first model is a three DOF mmfipulator modeled with three

hunped link compliances as depict('d in Figure 6.3, whose system parameters

are listed in following tables.

Table 6.2 3-Link Model h:inenmtic Pa,anwters

Link Length (m) Center of Mass (m) Offset

(x, y, z) (x, y, z) Angle (,leg)

Link 1 (0, 0, 1) (0, 0, -0.5) 0

Link 2 (1.2, 0, 0) (0.5, 0, 0) 90

Link 3 (1.4, 0, 0) (0.5, 0, 0) (}

Table 6.3 3-Link Model Ine,'tial Paramete,'s

Mass l_f[0ment of inertia ( kg.;n _)

Link 1 300 (0, 0, 30)

ti k 2 osb (6, 53, 44) .......
Link 3 450 ..... (50, 8, 50)

Table 6.4 3-Link Model Actuator Parameters

Inertial (10 -a. kg . ,.,{2)

Dampin.g (N . m/(rad/s)) "

Resistance (ohm)

Torque Constant (volt/(,'ad/s))

2Joint i Joint

4.2 2.1

0.4 0.4

0.8 0.8

20 20
100 100

0.5 0.5

Joint 3

2.1

0.3

0.8

14

Gear ratio 100

Back enff Constant (N. m/a,,,p) [ 0A -

and the exact payload and initial estimate are

Table 6.5 Actual Payload parameters and Initial Estimates

al--.m 90 9 9 9 10 5 5 10 5 10

al...,lO(_ = 0) 0 0 ' 0 0 0 0 0 '1 ' 0 0 0
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The stiffness matrix is K = diag[(4000000)3] in N/m, where (')n denotes

n repeated diagonal element. The simulation procedure is itemized in the

following steps.

6.4.1 Step 1: Selection of Nominal Reference Trajectories

The reference trajectory selected for each nominal joint is similar to

the fifth order polynomial function used in the last chapter, which is repeated

below

=  ey(t, j) + 0,0

(6.113)f(t,tf) 65f

where t I is the traveling time of reference joint displacement, and f(t, t I ) is a

normalized polynomial designed with zero velocity and acceleration at t = 0

and t = t I to avoid shocks that might cause structural resonance. In the

above equation, A0 represents the reference joint displacement, and 8r0 is the

starting point. In the simulation, an initial positional error is added to check

the tracking performance, that is, the actual joint will start from a point

denoted by _0 that is different from the reference initial #r0. The positional

parameters used in this example are tabulated in the next table.

Table 6.6 3-Link Model Trajectory Parameters

t/(sec) AO(deg) O,o Oo Oo-O,o

Joint 1 10 60 0 6 6

joint 2 10 70 0 6 6

Joint 3 10 50 0 6 6

6.4.2 Step 2: Selection of Designed Acceleration

From Equation 6.71, the designed accelerations are defined as
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Figure 6.3 Three-Link Robot Modeled with Three Link

Compliances
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_}d = /_ - Kp_(3 -/3,) - K,_(/_ -/3_)

in which 8, is the desired trajectory given in the last step, and 0r and 0r

come from consecutive time derivatives of Equation 6.113. In the designed

vibratory mode acceleration, the desired vibratory mode value r, and its time

derivatives, _r and _r, axe set to zero for oscillation elimination. Therefore,

the diagonal gain matrices Kp0, Ki0, Kp_, and Kta, which will assign stable

poles to Equations 6.72 and 6.73, need to be defined. The poles chosen here

are (-3, -4) for each nominal motion and (-1, -2) for every vibratory mode,

so the corresponding gain matrices are Kp0 = diag[(7)3], IQ0 = diag[(12)3],

Kpt_ = diag[(3)3], and Kit_ = diag[(2)3]. With the above parameters, the error

states e0 and et_ are evaluated from Equations 6.72 and 6.73 which are

c0= (O- Or)+K, o(o-or)+ x,:.f(o-or)dt

ez = (3 - 3,-) + Kpa(fl - B,.) + K,Z f (_ - _,.)dt

where 0 is a T¢"° vector of nominal joint displacements and _ is a T_no vector

of vibratory mode amplitudes.

6.4.3 Step 3: Construction of Control Input

The control input u is the conglomerate of Equations 6.78, 6.79,

6.94, and 6.105 as cited below

[
cT

l[_l.iT]ke- _[_1 A ],,eu2 _- u3 -

71

U3 -- e,ve0_ c0

0d ]
L ] +
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where 3'1 is defined in Equation 6.103 in which al = p is used in the simulation.

In the above computation of It3, a s_ffeguard is added to avoid dividing by

zero, that is, when the denominator eTo'eo reaches a predefined range close to
t

zero, u3 is set to zero. This precaution is to prevent numerical errors but

might affect the resultant V" value which according to the Lyapunov's second

method needs to be negative to guarantee the convergence of both controlled

motion and payload estimation. Yet, since e0 --+ 0 means nominal motion

approaches desired state, and the convergence of parameter estimation, which

is approximate to the result of le_t square method after choosing a small

p, relies primarily on the condition of persistent excitation. Therefore, the

major impact of setting u3 to zero is on vibration elimination. However, this

situation generally occurs at the end of nominal motion, hence the residual

oscillation could be left to be dissipated passively by structural damping. A

modification of the above approach is updating u3 by Equation 6.111, which

could have a nonzero divisor by resetting u3, but this will create a disturbance

on nominal motion, therefore, it is not used in simulations. After constructing

control input u, motion response is found numerically from system dynamics

defined in Equation 6.67.

6.4.4 Step 4: Update of Parameter Estimation

For constant payload inertia a, _ = _ where _ is given by Equa-

tion 6.98, then the update equation of estimate _i is

2

in which Z2 is defined in Equation 6.89, Z_ is introduced in Equation 6.80,

Z0 is the integral of Z_ shown in Equation 6.84, and _ is presented in Equa-

tion 6.85 where U is the integral of U' defined in Equation 6.84. According
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to the previous discussion, since a smaller p produces better estimate con-

vergence, p = 0.001 is chosen in simulation. Additionally, in the simulation

equal weight is placed on all data used in constructing R -1 , i.e., no exponen-

tim forgetting in estimation is introduced (a = 0), then from Equation 6.48,

R is updated by

.R = - RZT ZoR

The reason of choosing a = 0 is that if system ceases excitation during simula-

tion, according to Equation 6.57, a nonzero a will turn R -1 into a semidefinite

matrix quickly and hence cause R to increase drastically. Eventually, a sin-

gular R -1 makes R go to infinity and destroys the estimation process. In

general practice, estimation is terminated once persistent excitation stops, so

an exponential forgetting factor could be employed to speed up convergence,

but that is not implemented in our case studies in order to observe the kine-

matic effect on payload excitation. Therefore, a -= 0 is used here to put equal

weight on all collected data. The initial value R(0) used in the simulation is

a 10 × 10 diagonal matrix with ten repeated diagonal elements of value 1000.

The integration step in the following simulations is 1 msec.

6.4.5 Simulation Results on a 3-Link Manipulator Model

The first model simulation results are reported in the following fig-

ures. Figures 6.4 (a), (b), and (c) are the traces of nominal joint displace-

ments. Notice that the desired and actual displacements are separated by

an initial position error. Figures 6.4 (d), (e), and (f) are link deformations,

where the final steady state deformations in (d) and (e) are due to gravitation

force. Figures 6.4 (g), (h), and (i) are control voltages of joint 1 to 3. Figures

6.4 (j) to (s) are plots of exact and estimate of payload inertia, and Figure 6.4
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(t) showsthe sum of the diagonal element,or trace, of R, as an examination

of persistent excitation. As discussed before, for a = (}, R -1 grows r_l)i(tly

under persistent excitation, hence R and its trace diminishes swiftly and ide-

ally becomes zero. However, the reduction of the trace of R in Figure 6.4 (t)

stops at 706.7, hence the system is not properly excited in this case, therefore

estimation results are impaired. In Figures 6.4 (j) to (m), estimates of mass

and center of mass location approach actual values, but estimates of moment

of inertia in Figures 6.4 (n) to (s) fail to reach exact values, which means that

in the controlled motion payload is insufficiently activated to reflect its true

value. Since the simulated model is a three-link manipulator without wrist,

the gripper has limited angular movement to probe the moment of inertia

of payload, therefore, little information could be collected to reconstruct the

true identities. In the next case, a six DOF manipulator is simulated, which

will show improved estimation of moment of inertia with additional angular

movement of the wrist.
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6.4.6 Case 2: Simulation on a 6-Link Manipulator Model

Tim s('eond case simulates the motion control of a six DOF Tlmnip_t

lator modeled with three lumped link compliances as depicted in Figure 6.5.

The parameters of this model are listed in the following tables.

Table 6.7 6-Link Model Kinematic Parameters

Link Length (m) Center of Mass (m) Otfset

(x, y, z) (x, y, z) Angle (dcg)

Link 1 (0, 0, 0.8128) (0, 0,-0.4318) 0

Link 2 (1.1776, 0, 0) (0.508,-0.0254, 0) 90

Link 3 0

Link 4
(o, o, o)

i0, 0, 1.397

0.1016,-0.1778, 0)

(o, o,-o.5o8) 9O

Link 5 (0, 0, 0) (0, 0, 0) -60

Link 6 (0, 0, 0.1524) (0, 0,-0.1016) 60

Table 6.8 6-Link Model Inertial Parameters

Mass Moment of Inertia ( kg.m 2)

Link 1 317.5 (0, 0, 29.3)
Link 2 680.4 (5.9, 52.7, 43.9)

Link 3 453.6 (49.7, 7.61, 49.7

Link 4 68 (0.59, 0.59, 0.35)

Link 5 36.3 0.23, 0.23, 0.06)

Link 6 27.2 (0.12, 0.12, 0.06)

Table 6.9 6-Link Model Actuator

Joint 1 2

Inertia (10 -3 • kg • m 2) 4.2 2.1

Damping (N. ,hi(tad/s)) 0.4 ().4

Resistance (ohm)

Torque Constant (volt/(rad/s))
Gear ratio

0.8 0.8

20 20

100 100

Back emf Const. (N. re�amp 0.5 0.5

Parameters

3 4 5 6

2.1 1.3 1.3 0.8

0.3 0.4 0.3 0.3

0.8 0.8 0.8 0.8

14 11 8 8

100 80 30 10

0.4 0.3 0.3 0.2

and the gain matrix are: Iqpo = diag[(7)al, I¢,o = diag{(12),;l, K,,_ = diag[(3)a],

and Iqsn = diag[(2)3]. R(0), c_, and stiffness matrix a.re the same as the last

simulation, and a = 0. The nominal trajectories and initial states are given

in the next table.
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Table 6.10 6-Link Model Trajectory Parameters

Joint 1 10 60

joint 2 10 70

Joint 3 10 50

Joint 4 10 40

Joint 5 10 50

Joint 6 10 60

0_o 6o 0o- 6_o

0 I0 I0

0 I0 I0

0 I0 I0

0 I0 I0

0 10 I0

0 I0 10

Two sets of initial estimates are tested on this model. The first set has zero

initial estimates as shown in the next table.

Table 6.11 Actual Payload parameters and Initial Estimates

al_lO 90 9 9 9 10 5 5 10 5 10

al__O(t = O) 0 0 0 0 0 0 0 0 0 0

The second set has overestimated initial values as listed in the following table.

Table 6.12 Actual Payload parameters and Initial Estimates

m mrs: mr_ mr, Ip_ Zp_ Zp_ Ipyy I,_ Ip_
al--.10 90 9 9 9 10 5 5 10 5 10

hl-.lo(t = 0) 120 18 18 18 15 8 8 15 8 15

The purpose of using two sets of data is to test the controller's adaptive ca-

pacity to different initial estimates. Besides that a comparison of both results

will give a better understanding on the phenomenon of persistent excitation

and how estimation affects controller performance. Both simulations follow

the same steps listed in the three-link case and the results are presented in

Figures 6.6 (a) to (z). In order to produce a compact presentation, each

figure carries two sets of data where a solid line represents response of zero

initial case and a broken line indicates performance of overestimated case.

Figures 6.6 (a) to (f) show nominal joints: 1 to 6 tracking errors, i.e., 8 - 0r.

In these figures, the initial positional errors are deliberately arranged accord-

ing to Table 6.10 to test controller tracking capability. Figures 6.6 (g) to (i)
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are vibratory mode deflections. The input voltages are displayed in Figures

6.6 (j) to (o). Figures 6.6 (p) to (y) are estimate errors, fi, of ten payload

inertial parameters, and Figure 6.6 (z) is the trace of R which is treated as an

indicator of persistent excitation. From the nominal and vibratory motions

in Figures 6.6 (a) to (i), controller stability is verified. Additionally, estimate

convergence is revealed from Figures 6.6 (p) to (y) where estimate errors ap-

proach zero in the first 1.67 see. Also, the trace of R reduces form 10,000 to

less than 32 for zero initial case and 220 for overestimated case at the same

period of time. Both traces of R keep decreasing until reaching a value 4

for zero initial case and 16 for overestimated case. As stated before, for a

persistently exciting system, R will become zero eventually. Therefore, in the

six-link model, the controlled system is persistently exciting, which is essen-

tial to the convergence of the payload estimates. Such results are in contrast

to that of the third-link case where the trace of R stops at 707 and payload es-

timates fail to converge, especially the moment of inertia values. Apparently,

the wrist in the six-link model generates additional angular motion crucial to

the excitation of the moment of inertia contents. Such connections provide

us an insight of the relationship between system physical motion and exci-

tation conditions required by analytical estimation. Despite the satisfactory

performance of both zero initial and overestimated cases, some observations

regarding simulation results will be discussed below.

For the first three joints, both cases show almost identical response

as displayed in Figures 6.6 (a) to (c), but the difference shows up in the wrist

motion according to Figures 6.6 (d) to (f) where the zero initial estimate

case suffers a large overshoot especially within the first two seconds. Similar

distinctions also appear in the actuator control voltages shown by Figures 6.6

(m) and (o). Such results are due to a substantial payload inconsistency be-
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tween the model and plant. By comparing Tables 6.8 and 6.11, tile nmss and

moment of inertia of links 4, 5, and 6 are far less than actual payload values,

so payload dominates the dynamic effect of wrist motion. Furthermore, in

the motion control payload is uncertain and estimated on-line, therefore wrist

control becomes sensitive to estimate precision. According to Figures 6.6 (p)

to (y) results, the first two seconds is the transient period of estimation in

zero initial estimate case, depicted by solid line, yields large estimate errors.

Inevitably, the wrist motion is affected in this transient period. Interestingly,

the vigorous wrist overshoot of the zero initial case accidently creates better

excitation to payload than that of the overestimated case, therefore, the for-

mer has a smaller and faster declining R value as shown in Figure 6.6 (z).

By contrast, the inertia of the first three links are substantially larger than

payload magnitude, therefore their motion controls are robust to imprecise

estimates. However, both zero initial and overestimated cases have similar

structural deflections, and the steady sta*e deflections in Figures 6.6 (g) to

(h) are due to the weight of the structure. Notice that in Figures 6.6 (p)

to (s) mass and center of mass location estimates converge to actual values

quickly, similar tendencies are also observed from three-link case results, i.e.,

Figures 6.4 (j) to (m). Obviously, payload mass is easy to excite and could

be estimated precisely in few time steps.
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6.5 Effect of Update Rate on Adaptive Controller Per-

formance

In the real-time implementation of the designed adaptive control al-

gorithm, controlled system respor/se will be affected by update delay. Since

robotic dynamics are highly nonlinear, computation of dynamic parameters

demands finite amount of time. Details of real-time computation of robot

dynamic parameters are reported by [Wander and Tesar, 1987]. In physical

implementation, the controller has to use a sequence of periodically updated

dynamic parameters instead of continuously updated information to generate

control command. Consequently, the update interruption creates a distur-

bance to the stability of the proposed controller and affects the controlled

system response. In this section, update rate effect on controller performance

will be analyzed, and from the analyzed results suggestions will be given to

remedy the update disturbance. In the following analysis, subscript o denotes

a updated value, and A indicates an update rate error at every instance.

In Equation 6.78 the control input u is composed of

u = ul + u2 (6.114)

Now, ul defined in Equation 6.79 is replaced by a periodically updated form

given by

ul = [A1 ET]ko "_d + (f,)ko + [A.I F-'T],_o _d + (]')_° (6.115)

where the subscript o indicates a given update value. With this new ul, the

system dynamics in Equation 6.82 become

A1 E T e0 u2
] (6.116)- 0 _
J
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where A1 represents an error of Equation 6.82 due to update delay and is

defiued by

z_ 1
_r

r -]
(6.117)

Then, this error is transported to the time derivative of the Lyapunov function

given by Equation 6.93, tliat is

Per -K_-S, + 0 +2 E h2 k

1 1 Z ~
+ peTZl{t + {tTR-la + _aT(R-1)a -- 5# 2a

A_ E
¢ .,: e

E A2
u

(6.11s)

Accordingly, u2 originally given in Equation 6.94 is now constructed by up-

dated parameters shown in the following equation

1 . 1 ._ _T
u2 -- u3- _[A1 _T]koe -- _[A1 ]_oe (6.119)

this new definition reduces Equation 6.118 to

[ u3 ]+peT -Kfl- S, + $2 peT 0

• 1 T--I 1T
+ _(R-'_ - 1pZ_2 + pZ_e) _a_ R- _ + _ (6.120)

where

1

A 2 = --_ ([/_, _T]ko- [/_, _T]k) e

1( AT)E ],,o [/_,1S 1,_ e2 [L (6.121)

In the adaptive controller design, u3 is initially solved from the equation

e[u3 + 7x = 0 (6.122)



now, the solution is updated by

with "1'1odefined by

where

71o = e_(-Kfl - S,o + $2o) + °qeTe
P

Oa Oa

&o = -_

which creates an error Aa to Equation 6.122, i.e.,

eTtt3 Ji- ")'1 = e_'(Slo -- Sl -- S2o + S2)

A 3 '.

where

A3 = e_(&o - S, - &o + &)

With the additional errors, Equation 6.120 becomes

288

(6.123)

(6.124)

(6.125)

(6.126)

(6.127)

1) = --olleTe + pA3 + peoT(A1 + A2)

I T 1 T-- 1 IT
+ aT(R-'fi-- 5pZ_ + pZ_e) - 5pfi R- fi+ 5e _ (6.128)

The analysisisnow focused on the parameter estimation part in the above I_"

equation which isalso affectedby update delay. According to Equation 6.98,

the parameter estimation increment is computed by the update form

• 1 T
fi = Ro(_PZ2o - pZToe- ZTooeo) (6.129)
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whose effect on the original design is derived below

= &T[R-iRo(2pZT ° - pZToe -- Ztoeo)- lpZT + pZTle]

= {tT[R-a(R + AR)(_pZTo- pZTo e -- ZTOo¢o)- lpzf + pZTe]

1 T
= aT[R-'AR(I-PZ_°2 - pZ_oe - Z[o_o) + -_(pZ_o - pZf)

+ (-pZ_o + oz_)_ + (-zL + Zo%o] - a _z[_o

= hTflA4 nt- _tTA5 -- ¢T e (G.13o)

where errors AR, A4, and A 5 are

AR = Ro-R

_ 1 T
A4 - 1-n-'zXnZr°2- R-1ARZ_°e + 2 (Z2° - zT)-(Z_° - Z_)e

A5 = -R-X ARZT eo - ( ZToo-- zT)eo -- zT(eo -- ¢)

= -R-1ARZToo¢o- AZToeo- ZTAe (6.131)

with

A Zo = Zoo-Zo

A substitution of these results into Equation 6.128, l)" results in

= _OtleT e _ _p_ITR_I_ 1 _ 1 T_e e

+ p[zx3+ _(A, + _x_)+ a_z_,]+ _z_

(6.132)

(6.133)

Apparently, the errors caused by periodical update will create additional un-

certainty on the stability analysis of "1)'. However, since p is a control param-

eter decided by users, it could be very small to reduce the error term
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in the above_r expression,which suggeststhat p could serve as a parameter

to improve controller performance. Besides this new function, small p has also

been used to enhance parameter estimation precision in earlier case studies.

But the 1)" in Equation 6.133 is still under the influence of fiTAs where A5

is defined in Equation 6.131. Since As relates primarily to the update errors

of R, Z0, and e, they are further analyzed in the followings. Recalling the

definition of Z' in Equation 6.62 that

_[...- 1/--]

dg z; + AZ;

;ie {1,2,...,I0}

(6.134)

and also from Equation 6.84

U; = -/f_ - E A2 ko 3 -- f2 ko

_ _
-

d_=aU' + AU' (6.135)

In order to remove the acceleration dependence of Z_o and Uo_, two integrations

over time are executed which produce

f
Zoo = ](Z_ + AZ_)dt

a__aZ0 + AZ0 (6.136)

Go
f

= J(U' + AU')dt

(6.137)
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where A(.) represents a update error. Finally, the update errors of c and R,

from Equations 6.85 and 6.48, are

Go = Zoo_- Uo

= (Zo+_XZo)_,-(u+_u)

= (ZOO- u) + (AZo_- _u)

a__a e+Ae (6.138)

and

RO = aRo - R Z f _T l:_
0 OoL_OoJ'_O

= ORo- Ro(Zo+ _Zo)T(Zo+ _Zo)Ro

= aRo- Ro(ZToZo)Ro - Ro(AZTo)(Zo)Ro

-Ro( Z[)( AZo)Ro- Ro(,_Z[)(,',Zo)Ro (6.139)

AR = Ro - R

Unfortunately, from the above analytical results, no free parameter like p

could be chosen to reduce the effect of AR, AZ0, and A¢ on A5 and hence

on _r values given in Equation 6.133. Furthermore, a small p as suggested

above means that the estimation process in Equation 6.129 behaves like a

least square method result which is also affected by the errors of R, Z0, and

_. So some practical approaches must be adopted to solve these problems.

One solution proposed here is to stop estimation once the system ceases per-

sistent excitation. The reason is that when the system stops excitation, the

matrix R and its computed value Ro are small and ideally zero, so the error

AR is small. Also, the previous case study shows that payload estimates

approach to the exact values when R stops decreasing. This means that

and ¢o and therefore A¢ are almost zero. Hence the resultant A5 is small:
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consequently its effect on _" in Equation 6.133 is reduced. One question left

to be answered is what criterion should be used to decide that a system has

ceased excitation. In the previous case studies, the trace of R is used as an

indicator of persistent excitation, so the decrement rate of the trace could

serve the purpose. Practically, when the decrement rate of the trace is less

than a predefined value, the estimation process is stopped and the controller

will use the last payload estimates to compute control command for the rest

of motion.

6.6 Case Studies with 100 Hz Update Rate

The update effect will be demonstrated on the six-link model. Again,

both zero initial estimate and overestimated examples are repeated except

that now control parameters have a 100 Hz update rate while the integration

step remains 1 msec. All system and control parameters are the same as

before. The major changes are that R(0) has a value 10,000 for its diagonal

elements and p = 0.000001 is used to reduced update disturbance. In both

simulations, the estimation is terminated when the trace of Ro has a decre-

ment less than 0.5 over an update step. This 0.5 value is selected based on

our experience from previous simulation results. Notice that R(0) is 10 times

the value used in the last case study. This selection is to have a better ap-

proximation to the exact R(0) which is actually an infinite matrix. However,

it should be pointed out that a large R(0) will make estimation too sensitive

to initial estimation errors. Both simulation results are reported in Figures

6.7 (a) to (z). In each figure, a solid line represents the zero initial estimate

case result, and a broken link depicts the overestimated case response. By

comparing Figures 6.7 with Figures 6.6 where update effect is omitted, it
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appears that by choosinga small p and terminating estimation the update

rate disturbance is reduced. The simulations results in Figures 6.7 are similar

to that in Figure 6.6. The major differences are that the moment of inertia

estimates in the overestimated case do not converge to the exact values when

estimation is terminated, as indicated by the broken lines in Figures 6.7 (t) to

(y). According to simulation data, the zero initial ease ceases estimation at

1.07 see where the trace of R is 41.9; the overestimated case stops estimation

at 1.89 see where the trace of R is 147. Again, the zero initial estimate case

has better excitation than that of the overestimated case, which is due to the

large overshoot of wrist motion shown in Figures 6.7 (d) to (f). The case

study results confirm our suggestion that update delay impact on adaptive

controller performance could be remedied by using small O and termination

of estimation.
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6.7 Comparison Between Adaptive and Non-Adaptive

Control

In order to illustrate the merit of adaptive control in uncertain sys-

tems, we conduct the following comparison. Now, the parameter estimation

in Figure 6.2 is disconnected from control system. Therefore, by setting

a = R = 0 for all t, the above adaptive controller becomes a regular con-

troller built for the system with well-known inertial parameters including the

payload. Without the parameter estimation, the new regular controller is em-

ployed to control the six-link model with overestimated payload. This means

that the regular controller constructs control commands using a set of payload

values that are larger than exact values. The simulation results are displayed

by solid line in Figures 6.8 (a! to (f) for nominal mode tracking errors, Figures

6.8 (g) to (i) for link deflections, and Figures 6.8 (j) to (o) for control voltages.

For comparison purposes, the adaptive control results of the overestimated

case are also presented by broken line. Apparently, without adaptive effort,

the regular controller has very poor performance in this case. The overshoots

of wrist motion and the residual oscillation of/_a in Figures 6.8 (i) are un-

acceptable. Also, the wrist control voltages are beyond reasonable values.

However, another aspect regarding this example is that without proper de-

sign a controller might bring system instability to our studied models, which

means that the examples used in this report are not intrinsically robust. A

carelessly designed controller would fail the assigned control task. Of course,

according to the Chapter 5 results, a well-designed robust controller which

contains no adaptive loop is applicable to a system with uncertain param-

eters. Therefore, experimental work should be conducted to compare the

performance between adaptive and non-adaptive controllers. Some compar-

ison criteria are suggested below, which are general for rigid and compliant
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robotic systems:

1. settling time: nominal motion and residual oscillation

2. reference motion tracking precision

3. required actuator energy

4. capability of uncertainty estimation

5. estimation convergence speed of adaptive algorithm

6. real-time computation effort

7. robustness to unmodeled disturbance

8. applicability to compliant structure

9. applicability to modularized structure

10. required on-line measurement

11. tuning capability such as sele&ion of poles in PID, P matrix in the

Lyapunov function, p in the adaptive control law, and so forth.

For a given robot and task, different control algorithms should be tested ex-

perimentally. The results could be tabulated in a matrix format following the

above listed criteria. This table will help users to choose the best controller

for a specified task. Unfortunately, due to nonlinearity of robot dynamics,

selected control parameters like PID gains or the P matrix axe difficult to

parameterize explicitly to analyze their effects on controlled system perfor-

mance. So, one experimental result could not be extended directly to another
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task. Therefore, a collection of various task results will be very useful to cre-

ate a general table containing different controller perform_mee, which conld

serve as a_ indicator of the preferable control algorithm for a given task.
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6.8 Summary

In this chapter, the Newton-Euler and Lagrange methods are intro-

duced to extract link and payload inertia terms from nonlinear and coupled

manipulator dynamics. By doing so, the final dynamic formulation could be

expressed as a linear equation in inertial parameters composed of mass, cen-

ter of mass location, and moment of inertia of individual link and payload.

Based on this linear relation, a least square method is introduced to estimate

the constant but uncertain inertial parameters. The results could be applied

to on-site calibration of lumped manipulator inertia when drift of modeled

values is suspected or calibration is required for a new assembled modularized

structure. The convergence of the least square method is shown by a Lya-

punov type function and a direct integration of estimate for a persistently

exciting system. The requirement of persistent excitation to ensure accuracy

of estimate is also discussed.

For compliant manipulators carrying an uncertain payload, an adap-

tive algorithm is introduced to control nominal tracking, vibration elimina-

tion, and on-line payload estimation. The adaptive control law is applicable

to rigid robotic manipulators as well as lumped and distributed compliant ma-

nipulators. Three computer simulations are reported to verify the designed

results. The first simulation is conducted on a three-link robot modeled with

three lumped link compliances. In this case study, convergence of estimate is

impeded due to the limited angular movement of the gripper. To verify this,

the second and third simulations are performed on a six-link robot where

wrist motion is implemented. The six-link robot is also modeled with three

lumped link compliances. With the additional wrist motion, the system is

well excited and payload estimates converge to exact values swiftly. The see-
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ond and third simulations havedistinct initial estimates,whosepurposo is to

test adaptive capacity of the proposedcontroller. The relationship between

persistently exciting condition and physical motion is observedfrom a com-

parison betweenboth simulations. In both three-link and six-link examples,

nominal motion tracking and vibration elimination aresatisfactorily executed

by the adaptive controller.

In physical implementation, real-time computation delays createa

disturbance to the proposedcontrol algorithm which is developedbasedon

continuously updated information. In order to remedy the update delay dis-

turbance, update delay effect on adaptive controller stability is analyzed.

According to the analyzedresults, a small p and termination of estimation

once system ceases excitation are recommended to reduce the update de-

lay impact. Case studies are conducted to verify the suggestion. Finally,

comparison between adaptive and nonadaptive control laws are illustrated

through an example simulation. Several criteria are proposed to compare

between adaptive and nonadaptive controllers. It is suggested that different

controllers should be tested experimentally over various tasks in order to con-

struct a performance table that .assists users to select the best controller for

a specified task.



Chapter 7

Summary and Discussions

In this report, we have presented a systematic analysis of compliant

manipulators which covers dynamic modeling, property investigation, and

both regular and adaptive control algorithms. In the first chapter, we sur-

vey and categorize more than ninety recently published reports which are

dedicated to building an efficient, lightweight manipulator that has a large

payload-to-weight ratio and capable of undergoing high speed and precise op-

erations. Due to nonlinear interactions between robot nominal motion and

structural oscillations, the goal of building a general lightweight robot is a

difficult and slowly developing task. At this stage, many researchers still con-

duct primitive experiments on simple compliant structures such as one-link

arms in order to gain insight in dynamic modeling and control problems. Ad-

ditionally, most of the studies are aimed for spatial applications such as the

Spatial Shuttle Remote Manipulator System (RMS) which works in a zero-

g environment where structural inertia is not the main concern. Therefore,

most one-link models axe so light that they can not even support their own

weights, hence the experiments axe limited to horizontal movements to avoid

gravity effects. So far, a small number of studies_ e.g., [Rivin, et al., 1987]

and [Liao, Sung, and Thompson, 1987], are devoted to improve physically

industrial manipulator structural design by using composite components or

materials to reduce link weight while maintaining good rigidity. Other than

320
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that studies of lightweight industrial robots are still in analytic and numerical

simulation stages.

In order to create a valid description of flexibility dynamics, ex-

perimental works have been conducted to verify two mostly used compliant

models: distributed and lumped parameter models. For example, [Tsujisawa

and Book, 1989] have used a distributed parameter model on a two-link robot,

and [Behi, 1985] has developed a lumped parameter model for a Cincinnati

Milacron T3-776 robot. The former shows that the link lateral deflection_

could be depicted properly by the first two fundamental modes. However,

the first mode amplitude is about ten times of the second mode. Similar

results are also indicated by [Yang and Donath, 1988]. Both reports sup-

port the assumption used by lumped parameter model that the first mode

dominates structural deformation and hence it is the only mode modeled to

create simple but reasonably accurate dynamic equations. In order to retain

physical reality, the spring stiffnesses used in lumped parameter models are

actually evaluated from laboratory experiments as reported by [Sklar, 1988],

[Elmaraghy and Johns, 1988], [Behi, 1985], and [Good, Sweet, and Strobel,

1984]. From these experimental results, it is discovered that even in lumped

parameter models only finite salient modes could be triggered. Therefore,

instead of using seven decoupled vibratory modes (i.e., one joint compliance,

three link end-point deflections, and three link end-point twistings) to define

lumped compliances of a flexible link, generally, only joint compliance and two

principal plane deflections are considered in lumped parameter models. Link

lateral deflections are also the major considerations in most of distributed

parameter models. Therefore, in this report, we choose robot upper arm and

forearm lateral deflections as the major link compliances in our case studies.
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Based on availability of payload information, we propose two algo-

rithms to control compliant manipulators: one is built on well-known system

parameters, or regular controller, and the other is designed to adapt payload

uncertainty, or adaptive controller. Both controllers are built on general sys-

tem dynamic equations that are common for both distributed and lumped

parameter models. Also, in order to maintain controller generality, neither

nonlinear terms are neglected nor linearization is used to-simplify the con-

troller design. In the regular controller, we test the controller robustness by

introducing uncertainty in payload description during the case studies. By

choosing stable feedback gains and proper P matrix, the regular controller

maintains system stability even under incorrect payload information and ini-

tial position errors. However, as payload uncertainty increases and becomes

a dominant factor, the regular controller performance degrades. To remedy

this problem, an adaptive controller is introduced to undertake payload un-

certainty. By using the fact that system dynamics are a linear function of

inertial parameters, the uncertain payload is estimated on-line with the as-

sistance of the least square estimation method. One requirement of ensuring

estimate convergence is the persistently exciting condition which, as we point

out through case studies, is correlated with the system physical motion. That

is, if an uncertain parameter is not activated appropriately during a controlled

motion, the estimator can not collect enough information to reconstruct the

true identity. This observation indicates that for off-line system parameter

calibration, laboratory engineers need to test the trajectory carefully in order

to excite all parameters which are to be calibrated.

One problem discussed in this report is the effect of update delay on

the performance of adaptive controller. In real-time implementation, compu-

tation delays create a disturbance to the adaptive controller which is built
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on continuously updated signals. Therefore, the effect of update delay on

controlled system stability is analyzed, and suggestions are given to eliminate

update delay disturbance on controlled system response. Another important

issue, a comparison between adaptive and nonadaptive control methodologies,

is also demonstrated through example simulations. Of course, a casc study

can not represent a general comparison between adaptive and nonadaptive

controller performances, especially for a nonlinear system where controller

parameters such as the PID feedback gains and the P matrix are coupled

with system parameters in the final controlled system response. Hence, ex-

periments need to be conducted to demonstrate controller capability under

different tasks and uncertainties. We list several criteria to compare experi-

mental results, which will help the user to choose the best controller suited

for a given task.

Another way of solving the update delay problem is to design the

controller based on a discrete time dynamic model and then to synchronize

both computation and control update rates. However, it is difficult to convert

nonlinear robotic dynamics from continuous time to discrete time description.

Although, Euler's method is often used to approximate the conversion, it is

limited to slow varying systems. Hence, one solution is to write system dy-

naznics in terms of an autoregressive and moving average (ARMA) model

with uncertain coefficients. Then self-tuning regulator (STR) could be ap-

plied to stabilize the uncertain system either by pole placement technique

or one-step ahead optimization. In STR, the uncertain ARMA model coeffi-

cients are estimated on-line and used in constructing control command. The

drawback of STR method is that ARMA model coefficients must vary com-

paratively slower than the STR update rate, otherwise, STR can not produce

accurate estimates to generate the desired control command. Also, STR es-
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timates ARMA model coefficientsat every update step, so unless atsimph,

relation suchas linear proportion existsbetweenpayload uncertainty and es-

timated coefficients,it is difficult to extract payload identity from estimated

coefficients,which meansthat for nonlinear systems,STR could accomplish

adaptive control assignmentbut might not be able to provide exact uncer-

tainty information.

In both regular and adaptive control approaches,weencounter one

problem that the Lyapunov stability is not ensuredwhen all nominal error

states becomezero but vibratory error state remains active. This unique

character of compliant manipulators is due to dimensionalmismatch between

the number of available actuators and that of modeled degreesof freedom.

Sincepassivevibratory modesareaddedto compliant system dynamics, their

elimination relies on the regulation of nominal motion, which means that

controller has to transmit damping action through nominal joints, so nomi-

nal joints havethe responsibility of eliminating structural vibration instead of

just trajectory tracking. In the controller design,it is possibleto disturb nom-

inal tracking precision deliberately in order to obtain the Lyapunov stability.

However, that is not an effectivetradeoff, therefore, in both controllers, we

proposemethodologiesto reducethe sizeof the spherical ball in error space

where the Lyapunov stability is uncertain. In doing so, residual oscillation

is left to be dampenedpassivelyby structural damping. In caseresidual os-

cillation scale becomesintolerable, then a secondphase controller could be

employed to reduce residual oscillations. Now, the regular or adaptive con-

troller designedbefore acts asthe first phasecontroller that concentrateson

trajectory tracking and vibration elimination. Once the nominal joints get

closerto the terminal point and the error states approachthe spherical ball

that the Lyapunov stability is uncertain, then the secondphaseis switched
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on. The second phase controller could be built on different control criteria,

for example, one such sccond phase controller could be the optimal controller

presented below.

From our earlier case study experience, it is observed that in the

vicinity of terminal steady state, the velocity states remain relatively small.

Thcrefore, it is assumed that all coupling terms are negligible and gravity

effect is compensated at terminal state, then, in the vicinity of the terminal

point, the flexibility dynamics in Equation 4.9 could be approximated by the

following linear time-invariant form

C r

where A1 = A,(0_) 6 7"£"'×"', C = C(O,) 6 7Z,,a×,_o, A2 = A2(O,) 6 7Zno×'_o,

and 0r = 8(tf) is the terminal state of nominal joint in which t! is the fi-

nal time. In the above equation, A1, A2, and C are constant submatrices

evaluated at the terminal state with no vibrations. Defining

q

0

E 7_2('_°+'_) ; qr = q(tl) =

Equation 7.1 could be expressed as

0 Z'
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0 0
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0
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0

0
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(7.2)

(7.3)

where A is a 2(he + nz) × 2(no + na) matrix, B is a 2(no + ha) x no matrix, Z'

is an no × no identity matrix, and Z" is an nz x n_ identity matrix. Now, the
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goal is to control q to reach qr at t = t S and minimize a cost function given

by

J= fti' {(q--qr)TS(q--qr)+ uTWu}dt (7.4)

where to is the time optimal control starts, and S and W are two positive

definite, diagonal matrices with S = S T E 7_2('e+n_)×2(n°+'_) and W = W T E

_,0×n0. According to [Bryson and Ho, 1975], Equation 7.4 is an optimal

control problem with fixed terminal time and specified state variables, and

one optimal solution is given by

U = W-I(BT/_ -I- BTd2Tv)

where )_ is the Lagrange multiplier defined by

= --AT_ -- 2Sq - 2Sq_

_(to) = 0 ; ), _ T¢ _(_+_

(7.5)

which is the transition matrix used in formulating the solution of q given by

q(t) = ¢(t, to)q(to) + ¢(t,s)Bu(s)ds ; to < t < t S (7.8)

Finally, the v in Equation 7.5 is defined as

v = -WSI_ E 7_2(n°+na)

Wet = Jl I OBBTOTdt E 7¢-2(n°+n_)x_('_°+"_)

J?qo = ,_B(Wu + Br)_)dt E _2(.o+._,) (7.9)

Because q is not specified at t = to, A(to) = 0 is chosen in the above equation.

Also, the (I) in Equation 7.5 is given by

4(t, to) = -O(t, to)A

(_(to, to) = 2:ET_ 2(_°+_)×_("°+n_) (7.7)

(7.6)
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whcre Wet is called controllability grammian and is nonsingular for a control-

lable system in Equation 7.3. Since Equations 7.5 and 7.9 need to bc solved

iteratively, an off-line evaluated v value could be used in computing on-line

the u given by Equation 7.5. Actually, t/ could be free in order to obtain

a minimum settling time control, yet, that will introduce another control

parameter needed to be decided iteratively. Therefore, fixed time optimal

control is chosen here.

Additionally, in this report we introduce a special characteristic of

compliant manipulators that has seldom been noticed. This is the inaccessi-

bility problem of vibratory modes. According to the analysis in Chapter 4,

manipulator configuration affects actively damping of structural oscillations.

It is suggested that the inaccessible positions of a compliant manipulator

should be identified before trajectory planning so that undesired working

positions can be avoided. Also, since the first mode dominates structural de-

flections, lumped parameter model will be an efficient and effective approach

to study the inaccessibility problem.

Due to the complexity of compliant manipulators, this report only

investigates some of the dynamic and control problems. There are some issues

of compliant manipulators that need further study, which are listed below:

• development of lightweight robot designs for industrial applications

• comparison between lumped and distributed parameter models

• kinematic interpretation of vibratory mode inaccessibility

• interconnection between the inaccessibility of the first mode and that

of higher order modes
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• compensationof robot structural deflectionsby adjusting joint motions

• experimental verification of regular and adaptive control algorithms

• improvement of regular and adaptive controller performanceby intro-

ducing the secondphasecontroller

• criteria for the selectionof regular and adaptive controllers

• implementation of micromanipulators to perform on-line compensation

of structural deflection

• incorporation of adaptive control with learning control to build an ac-

curate system model for systemscontaining uncertain parameters

Theseresearchtopics require considerableeffort, but they will certainly make

lightweight manipulators becomemuch morepreciseand efficient machines.
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